14.對于函數(shù)f(x) 若存在常數(shù)s,使得對定義域內(nèi)的每一個x的值,都有f(x)=-f(2s-x),則稱f(x)為“和諧函數(shù)”,給出下列函數(shù)①f(x)=$\frac{1}{x+1}$  ②f(x)=(x-1)2  ③f(x)=x3+x2+1   ④f(x)=xcosx,其中所有“和諧函數(shù)”的序號是( 。
A.①③B.②③C.①④D.①③④

分析 判斷對于函數(shù)f(x)為準(zhǔn)奇函數(shù)的主要標(biāo)準(zhǔn)是:若存在常數(shù)s,使函數(shù)f(x)的圖象關(guān)于(s,0)對稱,則稱f(x)為準(zhǔn)奇函數(shù),由此逐一判斷四個函數(shù)得答案.

解答 解:對于函數(shù)f(x),若存在常數(shù)s,使得x取定義域內(nèi)的每一個值,都有f(x)=-f(2s-x)知,
函數(shù)f(x)的圖象關(guān)于(s,0)對稱,
對于①,f(x)=$\frac{1}{x+1}$,函數(shù)f(x)的圖象關(guān)于(-1,0)對稱,函數(shù)為“和諧函數(shù)”;
對于②,f(x)=(x-1)2,函無對稱數(shù)中心,函數(shù)不是“和諧函數(shù)”;
對于③,f(x)=x3+x2+1,函數(shù)f(x)不關(guān)于(s,0)中心對稱圖形,函數(shù)不是“和諧函數(shù)”;
對于④,f(x)=cosx,函數(shù)f(x)的圖象關(guān)于(kπ+$\frac{π}{2}$,0)對稱,函數(shù)為“和諧函數(shù)”.
∴為“和諧函數(shù)”的是①④.
故選:C.

點評 本題考查新定義的理解和應(yīng)用,函數(shù)f(x)的圖象關(guān)于(s,0)對稱,則稱f(x)為“和諧函數(shù)”是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若{an}為等差數(shù)列,Sn為其前n項和,若a1>0,d<0,S4=S8,則Sn>0成立的最大自然數(shù)n為( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x-1-a,(a∈R);
(1)若f(x)有零點,求實數(shù)a的取值范圍
(2)當(dāng)f(x)有零點時,討論f(x)有零點的個數(shù),并求出f(x)的零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知0<x<$\frac{π}{2}$,sinx-cosx=$\frac{π}{4}$,存在a,b,c(a,b,c∈N*),使得(a-πb)tan2x-ctanx+(a-πb)=0,則2a+3b+c=( 。
A.50B.70C.110D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)=f(b),則z=$\frac{2}{a}$+$\frac{5}$的最小值是( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.2$\sqrt{10}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{m}$=(2cosx,t)(t∈R),$\overrightarrow{n}$=(sinx-cosx,1),函數(shù)y=f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,將y=f(x)的圖象向左平移$\frac{π}{8}$個單位長度后得到y(tǒng)=g(x)的圖象且y=g(x)在區(qū)間[0,$\frac{π}{4}$]內(nèi)的最大值為$\sqrt{2}$.
(1)求t的值及y=f(x)的最小正周期;
(2)若x∈[0,π],求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{{\sqrt{x-2}}}{x-1}$,則函數(shù)f(x)的定義域為[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)計算:2lg4+lg$\frac{5}{8}+\sqrt{{{(\sqrt{3}-π)}^2}}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求${x^{\frac{3}{2}}}+{x^{-\frac{3}{2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=$\sqrt{3}$x,關(guān)于x的方程ax2+bx-$\sqrt{{a}^{2}-^{2}}$=0的兩根為m,n,則點P(m,n)(  )
A.在圓x2+y2=7內(nèi)B.在圓x2+y2=7上
C.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1內(nèi)D.在橢圓$\frac{{x}^{2}}{7}$+$\frac{{y}^{2}}{6}$=1上

查看答案和解析>>

同步練習(xí)冊答案