已知⊙C:x2+y2=r2(r>0)在點P(x0,y0)處的切線方程為x0x+y0y=r2.請類比此結論,在橢圓中也有類似結論:在橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點Q(x1,y1)處的切線方程為
 
考點:類比推理
專題:推理和證明
分析:由過圓x2+y2=r2上一點的切線方程x0x+y0y=r2,我們不難類比推斷出過橢圓上一點的切線方程:用x0x代x2,用y0y代y2,即可得.
解答: 解:類比過圓上一點的切線方程,可合情推理:
過橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點Q(x1,y1)處的切線方程為
x1x
a2
+
y1y
b2
=1(a>b>0)

故答案為:
x1x
a2
+
y1y
b2
=1(a>b>0)
點評:本題考查利用類比推理得到結論、證明類比結論時證明過程與其類比對象的證明過程類似或直接轉化為類比對象的結論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,給出以下結論:
①DB1⊥平面ACD1;
②AD1∥平面BCC1;
③AD⊥平面D1DB;
④平面ACD1⊥平面B1D1D;
⑤AB與DB1所成的角為45°.
其中所有正確結論的序號為
 
(請把正確結論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
1+x
1-x
,又記f1(x)=f(x),fk+1(x)=f(fk(x)),k∈N*),則f2013(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列等式:
12+22=
2×(2+1)×(2×2+1)
6

12+22+32=
3×(3+1)×(2×3+1)
6
;
12+22+32+42=
4×(4+1)×(2×4+1)
6
;

根據(jù)上述規(guī)律可得
12+22+32+…+n2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若|
a
|=|
b
|=|
a
-
b
|=1,則|
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的有
 

①已知A,B是橢圓
x2
3
+
y2
4
=1的左右兩個頂點,P是該橢圓上異于A,B的任一點,則KAP•KBP=-
3
4

②已知雙曲線x2-
y2
3
=1的左頂點為A1,右焦點為F2,P為雙曲線右支上一點,則
PA1
PF2
的最小值為-2.
③若拋物線C:x2=4y的焦點為F,拋物線上一點Q(2,1)和拋物線內一點R(2,m)(m>1),過點Q作拋物線的切線l1,直線l2過點Q且與l1垂直,則l2平分∠RQF;
④已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,xf′(x)-f(x)>0(x>0),則不等式f(x)>0的解集是(-1,0)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(
3
2
,sinα),
b
=(1,
1
3
)且
a
b
,則銳角α為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,旋轉一次的圓盤,指針落在圓盤中3分處的概率為a,落在圓盤中2分處的概率為b,落在圓盤中0分處的概率為c,(a,b,c∈(0,1)),已知旋轉一次圓盤得分的數(shù)學期望為1分,則
2
a
+
1
3b
的最小值為( 。
A、
32
3
B、
28
3
C、
14
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將正方形ABCD沿對角線BD折成一個直二面角,點C到達點C1,則異面直線AB與C1D所成角是( 。
A、90°B、60°
C、45°D、30°

查看答案和解析>>

同步練習冊答案