已知△ABC的三邊分別為a,b,c,且a=1,B=45°,S△ABC=2,則△ABC的外接圓的面積為
 
考點:正弦定理
專題:解三角形
分析:由S△ABC=2求得c的值,再由余弦定理可得b的值,再由正弦定理2r=
b
sinB
 求得三角形外接圓的半徑 r,從而求得△ABC的外接圓的面積
解答: 解:由題意可得 S△ABC=2=
1
2
ac•sinB=
c
2
2
2
,∴c=4
2

再由余弦定理可得b2=a2+c2-2ac•cosB=1+32-8
2
2
2
=25.
再由正弦定理可得2r=
b
sinB
=
5
2
2
,∴r=
5
2
2
 (r為三角形外接圓的半徑).
∴△ABC的外接圓的面積為 πr2=
25π
2
,
故答案為:
25π
2
點評:本題主要考查正弦定理、余弦定理的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a-2i=bi+1(a、b∈R),復(fù)數(shù)z=b+ai,則z
.
z
=
 
.(i為虛數(shù)單位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等邊三角形ABC的邊長為
2
,則
AB
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心坐標(biāo)為(0,1),且與直線2x-y-4=0相切,則圓C的標(biāo)準(zhǔn)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=lg(m2-2m-2)+(m2+3m+2)i,問當(dāng)m為何值時:
(1)z是實數(shù)?
(2)z是純虛數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB=AC=BD=1,AB?面M,AC⊥面M,BD⊥AB,BD與面M成30°角,則C、D間的距離為( 。
A、1
B、2
C、
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β,γ為兩兩不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
(1)若α⊥γ,β⊥γ,則α∥β;
(2)若m?α,n?α,m∥β,n∥β,則α∥β;
(3)若α∥β,l?α,則l∥β;
(4)若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,則m∥n.
其中正確的命題是(  )
A、(1)(3)
B、(2)(3)
C、(2)(4)
D、(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx+x-6的零點所在區(qū)間為( 。
A、(2,3)
B、(3,4)
C、(4,5)
D、(5,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|xex+1|,若函數(shù)y=f2(x)+bf(x)+2恰有四個不同的零點,則實數(shù)b的取值范圍是(  )
A、(-∞,-2
2
)
B、(-3,-2)
C、(-∞,-3)
D、(-3,-2
2
]

查看答案和解析>>

同步練習(xí)冊答案