設(shè)函數(shù).
(Ⅰ)若,求的最小值;
(Ⅱ)若,討論函數(shù)的單調(diào)性.
(Ⅰ)(Ⅱ)上遞增

試題分析:(Ⅰ)時(shí),,.
當(dāng)時(shí),;當(dāng)時(shí),.
所以上單調(diào)減小,在上單調(diào)增加
的最小值為
(Ⅱ)若,則,定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002947789303.png" style="vertical-align:middle;" />.

,所以上遞增,
,所以上遞減,
所以,,故.
所以上遞增.
點(diǎn)評(píng):第二小題求單調(diào)區(qū)間時(shí),原函數(shù)的導(dǎo)數(shù)大于零(或小于零)的不等式不容易解,此時(shí)對(duì)導(dǎo)函數(shù)再次求其導(dǎo)數(shù),判斷其最值,從而確定原函數(shù)的導(dǎo)數(shù)的正負(fù),得到原函數(shù)單調(diào)性
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)上是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)已知函數(shù).(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常數(shù),=2.71828)使不等式成立,求實(shí)數(shù)的取值范圍;
(Ⅲ) 證明對(duì)一切都有成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)在點(diǎn)的切線方程為.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè),求證:上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知函數(shù) 
(1) 當(dāng)時(shí),求函數(shù)的最值;
(2) 求函數(shù)的單調(diào)區(qū)間;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知數(shù)列的首項(xiàng),且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,滿足僅在點(diǎn)處取得最小值,則的取值范圍是(   )
A.(-1,2)B.(-2,4) C.(-4,0]D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
若函數(shù)時(shí)取得極值,且當(dāng)時(shí),恒成立.
(1)求實(shí)數(shù)的值;
(2)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)上是增函數(shù),在上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍;
(3)是否存在實(shí)數(shù),使得方程在區(qū)間上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出的范圍,若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案