與橢圓共焦點且過點P(2,1)的雙曲線方程是(    )
A.B.C.D.
B

試題分析:在橢圓中,,∴,∴焦點為,設所求的雙曲線方程為:,由雙曲線的定義可知:,∴,∴,故雙曲線方程為:.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點分別是橢圓C:的左、右焦點,過點軸的垂線,交橢圓的上半部分于點,過點的垂線交直線于點.

(1)如果點的坐標為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點個數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設分別為線段的中點.
(1)求橢圓的標準方程;
(2)若為線段的中點,求
(3)若,求證直線恒過定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

拋物線M: 的準線過橢圓N: 的左焦點,以坐標原點為圓心,以t(t>0)為半徑的圓分別與拋物線M在第一象限的部分以及y軸的正半軸相交于點A與點B,直線AB與x軸相交于點C.

(1)求拋物線M的方程.
(2)設點A的橫坐標為x1,點C的橫坐標為x2,曲線M上點D的橫坐標為x1+2,求直線CD的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設點A(,0),B(,0),直線AM、BM相交于點M,且它們的斜率之積為.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉,與圓相交于P、Q兩點,與軌跡C相交于R、S兩點,若|PQ|求△的面積的最大值和最小值(F′為軌跡C的左焦點).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切,直線與橢圓C相交于A、B兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是橢圓的左、右焦點,且離心率,點為橢圓上的一個動點,的內切圓面積的最大值為.
(1) 求橢圓的方程;
(2) 若是橢圓上不重合的四個點,滿足向量共線,
線,且,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的頂點與焦點分別是橢圓的焦點和頂點,若雙曲線的兩條漸近線與橢圓的焦點構成的四邊形恰為正方形,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線方程的離心率為,其實軸與虛軸的四個頂點和橢圓的四個頂點重合,橢圓G的離心率為,一定有(    )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案