已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得恒為定值.

【答案】分析:(I)由題意得M(1,0),直線l的方程為y=x-1與拋物線方程聯(lián)立,利用韋達(dá)定理,可得圓心坐標(biāo)與圓的半徑,從而可得圓的方程;
(II)若存在這樣的點(diǎn)M,使得為定值,直線l:x=ky+m與拋物線方程聯(lián)立,計(jì)算|AM|,|BM|,利用恒為定值,可求點(diǎn)M的坐標(biāo).
解答:解:(I)設(shè)A,B兩點(diǎn)坐標(biāo)為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為P(x,y),
由題意得M(1,0),直線l的方程為y=x-1.(2分)
可得x2-6x+1=0,
則x1+x2=6,x1•x2=1,∴.(4分)
故圓心為P(3,2),直徑
∴以AB為直徑的圓的方程為(x-3)2+(y-2)2=16.(6分)
(II)若存在這樣的點(diǎn)M,使得為定值,直線l:x=ky+m.
,∴y2-4ky-4m=0,∴y1+y2=4k,y1y2=-4m.
又∵,
=,(13分)
因?yàn)橐ck無關(guān),只需令,即m=2,進(jìn)而
所以,存在定點(diǎn)M(2,0),不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),恒為定值
點(diǎn)評(píng):本題考查圓的方程,考查直線與拋物線的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,聯(lián)立方程,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A是拋物線上橫坐標(biāo)為4且位于x軸上方的點(diǎn). A到拋物線準(zhǔn)線的距離等于5,過A作AB垂直于y軸,垂足為B,OB的中點(diǎn)為M(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求拋物線C的方程;
(Ⅱ)過M作MN⊥FA,垂足為N,求點(diǎn)N的坐標(biāo);
(Ⅲ)以M為圓心,4為半徑作圓M,點(diǎn)P(m,0)是x軸上的一個(gè)動(dòng)點(diǎn),試討論直線AP與圓M的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px(p>0),F(xiàn)為拋物線C的焦點(diǎn),A為拋物線C上的動(dòng)點(diǎn),過A作拋物線準(zhǔn)線l的垂線,垂足為Q.
(1)若點(diǎn)P(0,4)與點(diǎn)F的連線恰好過點(diǎn)A,且∠PQF=90°,求拋物線方程;
(2)設(shè)點(diǎn)M(m,0)在x軸上,若要使∠MAF總為銳角,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2Px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線y=kx+b(k≠0)與拋物線C交于兩點(diǎn)A(x1,y1),B(x2,y2),且|y1-y2|=a(a>0),求證:a2=
16(1-kb)k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,點(diǎn)M(m,0)在x軸的正半軸上,過M的直線l與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(I)若m=1,且直線l的斜率為1,求以AB為直徑的圓的方程;
(II)問是否存在定點(diǎn)M,不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得
1
|AM|2
+
1
|BM|2
恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若
MA
MB
=0,則k=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案