【題目】如圖,在矩形中,,,平面,且,、、分別為,,中點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)以點(diǎn)為原點(diǎn),分別以,,的方向?yàn)?/span>軸,軸,軸的正方向,建立空間直角坐標(biāo)系,求得,得到,利用線面平行的判定定理,得到平面,再由面面平行的判定定理,即可證得平面平面.
(2)求得平面和平面的法向量,利用向量的夾角公式,即可求解二面角的余弦值.
解:(1)以點(diǎn)為原點(diǎn),分別以,,的方向?yàn)?/span>軸,軸,軸的正方向,建立空間直角坐標(biāo)系.
則,,,,,,
又是中點(diǎn),∴,,
∴,∴,
又平面,平面,∴平面,
又是中點(diǎn),∴,
∵平面,平面,∴平面,
∵,,平面,∴平面平面.
(2)設(shè)平面的法向量,則,
由(1)知,,
∴,取,得,
同樣求平面的一個法向量,
,,
∴二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足:對任意都有,且當(dāng)x>0時,.
(1)求的值,并證明為奇函數(shù);
(2)判斷函數(shù)的單調(diào)性,并證明;
(3)若對任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足, ,其中.
(1)設(shè),求證:數(shù)列是等差數(shù)列,并求出的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得對于恒成立,若存在,求出的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表,且已知在100個人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為.
(1)請完成列聯(lián)表;
喜歡游泳 | 不喜歡游泳 | 合計 | |
男生 | 40 | ||
女生 | 30 | ||
合計 | 100 |
(2)根據(jù)列聯(lián)表,是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.
附:參考公式與臨界值表如下:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在橢圓外一直線上取 個不同的點(diǎn),過向橢圓作切線、,切點(diǎn)分別為、.記直線為.
(1)若存在正整數(shù)、(、,),使得點(diǎn)在直線上,證明:點(diǎn)在直線上;
(2)試求直線將橢圓分成的區(qū)域的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的左焦點(diǎn)為,且點(diǎn)在C上.
求C的方程;
設(shè)點(diǎn)P關(guān)于x軸的對稱點(diǎn)為點(diǎn)不經(jīng)過P點(diǎn)且斜率為k的直線l與C交于A,B兩點(diǎn),直線PA,PB分別與x軸交于點(diǎn)M,N,若,求k.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線: (為參數(shù), ),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線: .
(1)試將曲線與化為直角坐標(biāo)系中的普通方程,并指出兩曲線有公共點(diǎn)時的取值范圍;
(2)當(dāng)時,兩曲線相交于, 兩點(diǎn),求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com