【題目】已知 .
(1)請寫出fn(x)的表達式(不需證明);
(2)設fn(x)的極小值點為Pn(xn , yn),求yn;
(3)設 ,gn(x)的最大值為a,fn(x)的最小值為b,求b﹣a的最小值.
【答案】
(1)解:(Ⅰ)fn(x)=(x+n)ex(n∈N*).
(2)解:∵fn′(x)=(x+n+1)ex,
∴當x>﹣(n+1)時,fn′(x)>0;當x<﹣(n+1)時,fn′(x)<0.
∴當x=﹣(n+1)時,fn(x)取得極小值fn[﹣(n+1)]=﹣e﹣(n+1)
,即yn=﹣e﹣(n+1)(n∈N*).
(3)解:∵gn(x)=﹣[x+(n+1)]2+(n﹣3)2
∴a=+(n﹣3)2,
又b=﹣e﹣(n+1),
∴a﹣b=(n﹣3)2+e﹣(n+1),
令h(x)=(x﹣3)2+e﹣(x+1)(x≥0),則h'(x)=2(x﹣3)﹣e﹣(x+1).
∵h'(x)在[0,+∞)單調(diào)遞增,∴h'(x)≥h'(0)=﹣6﹣e﹣1,
∵h'(3)=﹣e﹣4<0,h'(4)=2﹣e﹣5>0,
∴存在x0∈(3,4)使得h'(x0)=0.
∵h'(x)在[0,+∞)單調(diào)遞增,
∴當0≤x<x0時,h'(x0)<0;當x>x0時,h'(x0)>0,
即h(x)在[x0,+∞)單調(diào)遞增,在[0,x0)單調(diào)遞減,
∴(h(x))min=h(x0),
又∵h(3)=e﹣4,h(4)=1+e﹣5,h(4)>h(3),
∴當n=3時,a﹣b取得最小值e﹣4
【解析】(1)根據(jù)導數(shù)寫出f1(x),f2(x)歸納出fn(x);(2)由(1)知fn(x)的表達式,要求極值點,就要借助導函數(shù),令導函數(shù)為0,解出xn , 驗證是極值后代入解析式即可求出yn . (3)類比求fn(x)的極小值的過程求出gn(x)的極大值,進而求出最值即可.
【考點精析】利用函數(shù)的極值與導數(shù)對題目進行判斷即可得到答案,需要熟知求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 若對任意的正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項和為Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設{an}是等差數(shù)列,其首項a1=1,公差d<0,若{an}是“H數(shù)列”,求d的值;
(3)證明:對任意的等差數(shù)列{an},總存在兩個“H數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的圖象相鄰兩條對稱軸的距離為 .
(1)求f( )的值;
(2)將f(x)的圖象上所有點向左平移m(m>0)個長度單位,得到y(tǒng)=g(x)的圖象,若y=g(x)圖象的一個對稱中心為( ,0),當m取得最小值時,求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=7,且a1+3,3a2 , a3+4構成等差數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)令bn=lna3n+1 , n=1,2,…,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖:在三棱錐中,已知底面是以為斜邊的等腰直角三角形,且側棱長,則三棱錐的外接球的表面積等于__________.
【答案】
【解析】三棱錐的外接球的球心在SM上(M為AB 中點),球半徑設為R,則
點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.
【題型】填空題
【結束】
16
【題目】已知斜率的直線過拋物線的焦點,且與拋物線相交于、兩點,分別過點、若作拋物線的兩條切線相交于點,則的面積為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列四個命題:
1)若α>β且α、β都是第一象限角,則tanα>tanβ;
2)“對任意x∈R,都有x2≥0”的否定為“存在x0∈R,使得 <0”;
3)已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負數(shù),則(p)∨q為真命題;
4)函數(shù) 是偶函數(shù).
其中真命題的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:
(1)BE=EC;
(2)ADDE=2PB2 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com