【題目】如圖,在三棱錐中,,的中點(diǎn).

(1)證明:平面;

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

【答案】解:

(1)因?yàn)?/span>AP=CP=AC=4,OAC的中點(diǎn),所以OPAC,且OP=

連結(jié)OB.因?yàn)?/span>AB=BC=,所以△ABC為等腰直角三角形,且OBAC,OB==2.

知,OPOB

OPOB,OPACPO⊥平面ABC

(2)CHOM,垂足為H.又由(1)可得OPCH,所以CH⊥平面POM

CH的長(zhǎng)為點(diǎn)C到平面POM的距離.

由題設(shè)可知OC==2,CM==,∠ACB=45°.

所以OM=,CH==

所以點(diǎn)C到平面POM的距離為

【解析】分析:(1)連接,欲證平面,只需證明即可;(2)過(guò)點(diǎn),垂足為,只需論證的長(zhǎng)即為所求,再利用平面幾何知識(shí)求解即可.

詳解(1)因?yàn)?/span>AP=CP=AC=4,OAC的中點(diǎn),所以OPAC,且OP=

連結(jié)OB.因?yàn)?/span>AB=BC=,所以△ABC為等腰直角三角形,且OBAC,OB==2.

知,OPOB

OPOB,OPACPO⊥平面ABC

(2)CHOM,垂足為H.又由(1)可得OPCH,所以CH⊥平面POM

CH的長(zhǎng)為點(diǎn)C到平面POM的距離.

由題設(shè)可知OC==2,CM==,∠ACB=45°.

所以OM=,CH==

所以點(diǎn)C到平面POM的距離為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿(mǎn)足f(x)+f(x+5)=16,當(dāng)x∈(﹣1,9)時(shí),f(x)=x2﹣2x , 則函數(shù)f(x)在[0,2016]上的零點(diǎn)個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1200編號(hào),并按編號(hào)順序平均分為40組(15號(hào),610號(hào),196200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 .

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參加植樹(shù)活動(dòng),林業(yè)部門(mén)在植樹(shù)前,為了保證樹(shù)苗的質(zhì)量,將在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè),現(xiàn)從同一種樹(shù)的甲、乙兩批樹(shù)苗中各抽測(cè)了10株樹(shù)苗,量出它們的高度如下(單位:厘米):

甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.

(1)你能用適當(dāng)?shù)慕y(tǒng)計(jì)圖表示上面的數(shù)據(jù)嗎?

(2)根據(jù)你所畫(huà)的統(tǒng)計(jì)圖,對(duì)甲,乙兩種樹(shù)苗的高度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請(qǐng)說(shuō)明理由.
(3)若數(shù)列{bn},對(duì)于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一(1)班全體男生的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見(jiàn)部分如圖所示,據(jù)此解答如下問(wèn)題:

(1)求該班全體男生的人數(shù);

(2)求分?jǐn)?shù)在之間的男生人數(shù),并計(jì)算頻率分布直方圖中之間的矩形的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面是邊長(zhǎng)為的菱形, ,四邊形是矩形,平面平面 的中點(diǎn).

(1)求證: 平面;

(2)求直線(xiàn)與平面所成角的正弦值;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校有線(xiàn)網(wǎng)絡(luò)同時(shí)提供A、B兩套校本選修課程。A套選修課播40分鐘,課后研討20分鐘,可獲得學(xué)分5B套選修課播32分鐘,課后研討40分鐘,可獲學(xué)分4分。全學(xué)期20周,網(wǎng)絡(luò)每周開(kāi)播兩次,每次均為獨(dú)立內(nèi)容。學(xué)校規(guī)定學(xué)生每學(xué)期收看選修課不超過(guò)1400分鐘,研討時(shí)間不得少于1000分鐘。兩套選修課怎樣合理選擇,才能獲得最好學(xué)分成績(jī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是(﹣1,1)上的偶函數(shù),且在區(qū)間(﹣1,0)上是單調(diào)遞增的,A,B,C是銳角三角形△ABC的三個(gè)內(nèi)角,則下列不等式中一定成立的是(
A.f(sinA)>f(sinB)
B.f(sinA)>f(cosB)
C.f(cosC)>f(sinB)
D.f(sinC)>f(cosB)

查看答案和解析>>

同步練習(xí)冊(cè)答案