【題目】龍虎山花語世界位于龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計唯美新穎,玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自年春建成,試運(yùn)行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬人.
某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在年月日賞花旺季對進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日名游客中抽取人進(jìn)行統(tǒng)計分析,結(jié)果如下:
年齡 | 頻數(shù) | 頻率 | 男 | 女 |
① | ② | ③ | ④ | |
4 | ||||
合計 |
(I)完成表一中的空位①~④,并作答題紙中補(bǔ)全頻率分布直方圖,并估計年月日當(dāng)日接待游客中歲以下的游戲的人數(shù).
(II)完成表二,并判斷能否有的把握認(rèn)為在觀花游客中“年齡達(dá)到歲以上”與“性別”相關(guān);
(表二)
歲以上 | 歲以下 | 合計 | |
男生 | |||
女生 | |||
合計 |
(參考公式: ,其中)
(III)按分層抽樣(分歲以上與歲以下兩層)抽取被調(diào)查的位游客中的人作為幸運(yùn)游客免費領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這人中選取人接受電視臺采訪,設(shè)這人中年齡在歲以上(含歲)的人數(shù)為,求的分布列.
【答案】(1)6000;(2)見解析;(3)見解析.
【解析】試題分析:(I)由頻率分布表的性質(zhì)能完成表(—),從而能完成頻率分布直方圖,進(jìn)而求出 歲以下頻率,由此以頻率作為概率,能估計2017 年7月1日當(dāng)日接待游客中 歲以下人數(shù);(II)完成表格,求出 ,從而得到?jīng)]有 的把握認(rèn)為在觀花游客中“年齡達(dá)到 以上”與“性別”有關(guān);(III)由分層抽樣應(yīng)從這 人中抽取 以上人數(shù): , 以下人數(shù)的取值可能 ,分別求出相應(yīng)的概率,由此能求出 的分布列.
試題解析:(I)完成表(一): .
完成以下頻率分布直方圖:
因為年齡在歲以下的頻率為,
以頻率作為概率,估計年月日當(dāng)日接待游客中歲以下的人數(shù)為.
(II)完成列聯(lián)表如下:
歲以上 | 歲以下 | 合計 | |
男生 | |||
女生 | |||
合計 |
的觀測值,
所以沒有的把握認(rèn)為在觀花游客中“年齡達(dá)到歲以上”與“性別”相關(guān).
(III)由分層抽樣應(yīng)從這人中抽取到歲以上的人的人數(shù)為人,
歲以下的人的人數(shù)為人,
故的所有可能的取值為.
,
,
,
故的分布列為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,其中為自然對數(shù)的底數(shù),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有極大值,又有極小值,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)為何值時, 軸為曲線的切線;
(2)用表示中的最小值,設(shè)函數(shù),討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時,f(x)=2x﹣1,則f( ),f( ),f( )的大小關(guān)系是( )
A.f( )<f( )<f( )
B.f( )<f( )<f( )??
C.f( )<f( )<f( )
D.f( )<f( )<f( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】盒中共有形狀大小完全相同的5個球,其中有2個紅球和3個白球.若從中隨機(jī)取2個球,則概率為 的事件是( )
A.都不是紅球
B.恰有1個紅球
C.至少有1個紅球
D.至多有1個紅球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2ax+5(a>1).
(1)若f(x)的定義域和值域均是[1,a],求實數(shù)a的值;
(2)若對任意的x1 , x2∈[1,a+1],總有|f(x1)﹣f(x2)|≤4,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點D在線段AC上,且AD=4DC.
(Ⅰ)求BD的長;
(Ⅱ)求sin∠CBD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com