【題目】已知函數(shù)F(x)=|lgx|,若0<a<b,且f(a)=f(b),則a+2b的取值范圍是(
A.
B.
C.(3,+∞)
D.[3,+∞)

【答案】C
【解析】解答:因為f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或 ,所以a+2b= 又0<a<b,所以0<a<1<b,令 ,由“對勾”函數(shù)的性質(zhì)知函數(shù)f(a)在a∈(0,1)上為減函數(shù),所以f(a)>f(1)=1+ =3,即a+2b的取值范圍是(3,+∞).
故選C.
分析:由題意f(a)=f(b),求出ab的關(guān)系,然后利用“對勾”函數(shù)的性質(zhì)知函數(shù)f(a)在a∈(0,1)上為減函數(shù),確定a+2b的取值范圍.
【考點精析】本題主要考查了基本不等式的相關(guān)知識點,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的函數(shù) 滿足 ,其導(dǎo)函數(shù) 滿足 ,則下列結(jié)論中一定錯誤的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點,過點軸作垂線段,垂足為,當點在圓上運動時,線段的中點的軌跡為.

(1)求曲線的方程;

(2)過點(0,-2)作直線交于兩點,(O為原點),求三角形面積的最大值,并求此時的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為等差數(shù)列,公差 ),且
(1)求證:當 取不同自然數(shù)時,此方程有公共根;
(2)若方程不同的根依次為 , , …, , …,求證:數(shù)列 為等差數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每?恳徽颈阋断禄疖囈呀(jīng)過的各站發(fā)往該站的郵袋各1個,同時又要裝上該站發(fā)往以后各站的郵袋各1個,設(shè)從第k站出發(fā)時,郵政車廂內(nèi)共有郵袋ak個(k=1,2,…,n).
(1)求數(shù)列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,最小值為4的有多少個?( (0<x<π) ③y=ex+4ex④y=log3x+4logx3.
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線ax﹣by+2=0(a>0,b>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點,則當 + 取最小值時,函數(shù)f(x)的解析式是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中,下列選項正確的是( )

A. 在回歸直線中,變量時,變量的值一定是15.

B. 兩個變量相關(guān)性越強,則相關(guān)系數(shù)就越接近于1.

C. 在殘差圖中,殘差點比較均勻落在水平的帶狀區(qū)域中即可說明選用的模型比較合適,與帶狀區(qū)域的寬度無關(guān).

D. 是兩個相等的非零實數(shù),則是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣bx+alnx.
(1)若b=2,函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求實數(shù)a的取值范圍;
(2)在(1)的條件下,證明:f(x2)>﹣ ;
(3)若對任意b∈[1,2],都存在x∈(1,e)(e為自然對數(shù)的底數(shù)),使得f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案