精英家教網 > 高中數學 > 題目詳情
在橢圓上到直線l:3x-2y-16=0距離最短的點的坐標是______________,最短距離是__________。

答案:
解析:

);


提示:

設橢圓上的任意一點為M(2cosθ,sinθ)則M點到直線l的距離

∴當φθ=時,d有最小值

此時,θ=φ,sinθ=-cosφ=-,cosθ=sinφ=

M點坐標是()。


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,F是中心在原點、焦點在x軸上的橢圓C的右焦點,\直線l:x=4是橢圓C的右準線,F到直線l的距離等于3.
(1)求橢圓C的方程;
(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓中心在原點,焦點在坐標軸上,直線l:y=
3
(x+1)
與橢圓相交于A、B兩點,若線段AB的中點M到原點的距離為1,且|AB|=2.
(1)求點M坐標;
(2)求橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F2,上頂點為A,在x軸負半軸上有一點B,滿足AB⊥AF2.且F1為BF2的中點.
(1)求橢圓C的離心率;
(2)D是過A,B,F2三點的圓上的點,D到直線l:x-
3
y-3=0的最大距離等于橢圓長軸的長,求橢圓C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
8
+
y2
2
=1
經過點M(2,1),O為坐標原點,平行于OM的直線l在y軸上的截距為m(m≠0).
(1)當m=3時,判斷直線l與橢圓的位置關系(寫出結論,不需證明);
(2)當m=3時,P為橢圓上的動點,求點P到直線l距離的最小值;
(3)如圖,當l交橢圓于A、B兩個不同點時,求證直線MA、MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:橢圓C的中心在原點,焦點在x軸上,焦距為8,且經過點(0,3)
(1)求此橢圓的方程
(2)若已知直線l:4x-5y+40=0,問:橢圓C上是否存在一點,使它到直線l的距離最。孔钚【嚯x是多少?

查看答案和解析>>

同步練習冊答案