(本小題滿分13分)若圓過點(diǎn)且與直線相切,設(shè)圓心的軌跡為曲線,、為曲線上的兩點(diǎn),點(diǎn),且滿足.
(1)求曲線的方程;
(2)若,直線的斜率為,過、兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程;
(3)分別過、作曲線的切線,兩條切線交于點(diǎn),若點(diǎn)恰好在直線上,求證:與均為定值.
解:(1)依題意,點(diǎn)到定點(diǎn)的距離等于到定直線的距離,所以點(diǎn)的軌跡為拋物線,曲線的方程為; …………………………………………………………3分
(2)直線的方程是,即,
由得點(diǎn)、的坐標(biāo)是或,………………………………5分
當(dāng)、時,由得,,
所以拋物線在點(diǎn)處切線的斜率為,
直線的方程為,即…………①
線段的中點(diǎn)坐標(biāo)為,中垂線方程為,即…………②
由①、②解得, …………………………………………………………7分
于是,圓的方程為,
即 , ………………………………………………………8分
當(dāng)、時,拋物線在點(diǎn)處切線的斜率為,此時切線與垂直,所求圓為以為直徑的圓,可求得圓為, ……9分
(3)設(shè),,,過點(diǎn)的切線方程為,
即,同理可得,所以,,……10分
又=,所以直線的方程為,
即,亦即,所以,………………………………………11分
而,,所以
. …………………………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com