(本小題滿分13分)若圓過點(diǎn)且與直線相切,設(shè)圓心的軌跡為曲線、為曲線上的兩點(diǎn),點(diǎn),且滿足.

(1)求曲線的方程;

(2)若,直線的斜率為,過、兩點(diǎn)的圓與拋物線在點(diǎn)處有共同的切線,求圓的方程;

(3)分別過、作曲線的切線,兩條切線交于點(diǎn),若點(diǎn)恰好在直線上,求證:均為定值.

解:(1)依題意,點(diǎn)到定點(diǎn)的距離等于到定直線的距離,所以點(diǎn)的軌跡為拋物線,曲線的方程為;       …………………………………………………………3分

(2)直線的方程是,即,

得點(diǎn)、的坐標(biāo)是,………………………………5分

當(dāng)、時,由,

 所以拋物線在點(diǎn)處切線的斜率為,

直線的方程為,即…………①

線段的中點(diǎn)坐標(biāo)為,中垂線方程為,即…………②

由①、②解得,       …………………………………………………………7分

于是,圓的方程為,

即  , ………………………………………………………8分

當(dāng)、時,拋物線在點(diǎn)處切線的斜率為,此時切線與垂直,所求圓為以為直徑的圓,可求得圓為,  ……9分

(3)設(shè),,,過點(diǎn)的切線方程為,

,同理可得,所以,,……10分

=,所以直線的方程為,

,亦即,所以,………………………………………11分

,,所以

.               …………………………………13分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊答案