(1)已知函數(shù)f(x)是R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2-2x-3,求f(x)的解析式.
(2)已知奇函數(shù)f(x)的定義域?yàn)閇-3,3],且在區(qū)間[-3,0]內(nèi)遞增,求滿足f(2m-1)+f(m2-2)<0的實(shí)數(shù)m的取值范圍.
分析:(1)當(dāng)x<0時(shí),-x>0,由已知表達(dá)式可求得f(-x),根據(jù)奇函數(shù)性質(zhì)可求得f(x)與f(-x)的關(guān)系,由f(-0)=-f(0),可得f(0),從而可求f(x)解析式;
(2)由f(x)在[-3,0]內(nèi)的單調(diào)性及奇函數(shù)性質(zhì)可判斷f(x)在定義域?yàn)閇-3,3]內(nèi)的單調(diào)性,根據(jù)單調(diào)性、奇偶性可去掉不等式中的符號(hào)“f”,注意函數(shù)定義域.
解答:解:(1)當(dāng)x<0時(shí),-x>0,f(-x)=(-x)2-2(-x)-3=x2+2x-3,
又f(x)為奇函數(shù),所以f(x)=-f(-x)=-(x2+2x-3)=-x2-2x+3,
而f(-0)=-f(0),即f(0)=0,
所以f(x)=
x2-2x-3,x>0
0,x=0
-x2-2x+3,x<0

(2)因?yàn)閒(x)為奇函數(shù),且在[-3,0]內(nèi)遞增,所以在[0,3]內(nèi)也遞增,
所以f(x)在定義域[-3,3]內(nèi)遞增,
f(2m-1)+f(m2-2)<0,可化為f(m2-2)<-f(2m-1),
由f(x)為奇函數(shù),得f(m2-2)<f(1-2m),
又f(x)在定義域[-3,3]內(nèi)遞增,
所以
m2-2<1-2m
-3≤m2-2≤3
-3≤2m-1≤3
,解得-1≤m<1.
故滿足f(2m-1)+f(m2-2)<0的實(shí)數(shù)m的取值范圍為:[-1,1).
點(diǎn)評(píng):本題考查函數(shù)奇偶性、單調(diào)性及其應(yīng)用,考查抽象不等式的解法,考查學(xué)生靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點(diǎn).
①試求直線PQ的斜率kPQ的取值范圍;
②求f(x)圖象上任一點(diǎn)切線的斜率k的范圍;
(2)由(1)你能得出什么結(jié)論?(只須寫(xiě)出結(jié)論,不必證明),試運(yùn)用這個(gè)結(jié)論解答下面的問(wèn)題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域?yàn)镈,對(duì)任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
①當(dāng)D=(0,1)時(shí),f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說(shuō)明理由;
②當(dāng)D=(0,
3
3
)
,函數(shù)f(x)=x3+ax+b時(shí),若f(x)∈MD,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
(2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=
x+3(x≤0)
2x(x>0)
,則f(f(-2))為
2
2
;
(2)不等式f(x)>2的解集是
(-1,0]∪(1,+∞)
(-1,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
①若f(3)<0,試求a的取值范圍;
②寫(xiě)出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
(2)若曲線y=x+
p
x
(p≠0)上存在兩個(gè)不同點(diǎn)關(guān)于直線y=x對(duì)稱,求實(shí)數(shù)p的取值范圍;
(3)當(dāng)0<a<1時(shí),就函數(shù)y=ax與y=logax的圖象的交點(diǎn)情況提出你的問(wèn)題,并加以解決.(說(shuō)明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
1
e
]
上單調(diào)遞減,在區(qū)間[
1
e
,1)
上單調(diào)遞增.解題過(guò)程中可以利用;②將根據(jù)提出和解決問(wèn)題的不同層次區(qū)別給分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過(guò)點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
,
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案