已知向量
b
與向量
a
=(2,-1,2)共線,且滿足
a
b
=18,(k
a
+
b
)⊥(k
a
-
b
),求向量
b
及k的值.
考點(diǎn):數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系
專題:平面向量及應(yīng)用
分析:由已知得存在實(shí)數(shù)λ,使
b
a
,由此能求出
b
=2
a
=(4,-2,4).由(k
a
+
b
)⊥(k
a
-
b
),得(k2-4)|
a
|2=0,由此能求出k=±2.
解答: 解:∵
a
,
b
共線,∴存在實(shí)數(shù)λ,使
b
a

a
b
a
2=λ|
a
|2,解得λ=2.
b
=2
a
=(4,-2,4).
∵(k
a
+
b
)⊥(k
a
-
b
),
∴(k
a
+
b
)•(k
a
-
b
)=(k
a
+2
a
)•(k
a
-2
a
)=0,
即(k2-4)|
a
|2=0,
解得k=±2.
點(diǎn)評:本題考查向量
b
及k的值的求法,解題時(shí)要認(rèn)真審題,注意向量共線和向量垂直的性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線x+
3
y-m=0與圓x2+y2=1在第一象限內(nèi)有兩個(gè)不同的交點(diǎn),則m的取值范圍是( 。
A、(1,2)
B、(
3
,3)
C、(1,
3
D、(
3
,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(diǎn)(1,2)且點(diǎn)P(-2,3)到l的距離為3,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinx,
3
sinx),
n
=(sinx,cosx),設(shè)函數(shù)f(x)=
m
n

(Ⅰ)求函數(shù)f(x)的解析式,并求f(x)在區(qū)間[-
π
4
,
π
6
]上的最小值;
(Ⅱ)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若f(A)+f(-A)=
3
2
,b+c=7,△ABC的面積為2
3
,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知分段函數(shù)f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x+3,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),直線y=x+
6
與以原點(diǎn)為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左右焦點(diǎn),P為橢圓C上的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知A為橢圓C上的左頂點(diǎn),直線∫過右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1,k2滿足k1+
k2=-
1
2
,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,PA=AB=3,BC=2,E、F分別是棱AD、PC的中點(diǎn).
(1)求證:EF∥平面PAB,EF⊥平面PBC;
(2)若直線PC與平面ABCD所成角為
π
4
,點(diǎn)P在AB上的射影O在靠近點(diǎn)B的一側(cè),求BO、PB長及二面角P-BC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>2或x<-1},B={x|a<x<a+1},若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2+2(m+3)x-2(2m-1)y+5m2+2=0表示一個(gè)圓.
(1)求m的取值范圍;
(2)若m≥0,求該圓半徑r的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案