【題目】(本小題滿分14分)

設(shè)橢圓的離心率為,其左焦點(diǎn)與拋物線的焦點(diǎn)相同.

1)求此橢圓的方程;

2)若過此橢圓的右焦點(diǎn)的直線與曲線只有一個交點(diǎn),則

求直線的方程;

橢圓上是否存在點(diǎn),使得,若存在,請說明一共有幾個點(diǎn);若不存在,請說明理由.

【答案】(1)

(2).

12個

【解析】

試題分析:對于第一問中的橢圓方程,根據(jù)拋物線的焦點(diǎn)坐標(biāo)求出的值,根據(jù)離心率的值,得出的值,從而得出的值,得到相應(yīng)的橢圓方程,對于第二問,根據(jù)題的條件,設(shè)出直線的方程,當(dāng)直線和拋物線相切時,一種情況,聯(lián)立式子,對應(yīng)的二次方程有兩個相等實(shí)根,判別式等于0,一種是直線和拋物線的對稱軸平行即可得結(jié)果;根據(jù)所求的直線方程,可以得出對應(yīng)的交點(diǎn)P的坐標(biāo),因?yàn)镕點(diǎn)是已知的,所以三角形的底邊FP的長度已經(jīng)確定,要想面積是所給的值,可以得出點(diǎn)M到此直線的距離,建立相應(yīng)的等量關(guān)系,從而得出點(diǎn)的個數(shù).

試題解析:

解:(1)拋物線的焦點(diǎn)為

所以. 1分)

,得 2分)

所以 3分)

因此,所求橢圓的方程為(*)(4分)

2橢圓的右焦點(diǎn)為,過點(diǎn)軸平行的直線顯然與曲線沒有交點(diǎn).設(shè)直線的斜率為. 5分)

當(dāng)時,則直線過點(diǎn)且與曲線只有一個交點(diǎn),此時直線的方程為; 6分)

當(dāng)時,因直線過點(diǎn),故可設(shè)其方程為,將其代入消去,得.

因?yàn)?/span>直線與曲線只有一個交點(diǎn),所以判別式,于是,即直線的方程為. 7分)

因此,所求的直線的方程為. 8分)

可求出點(diǎn)的坐標(biāo)是.

當(dāng)點(diǎn)的坐標(biāo)為時,則.于是=,從而,代入(*)式聯(lián)立:,求得,此時滿足條件的點(diǎn)有4個:

. 10分)

當(dāng)點(diǎn)的坐標(biāo)為,則,點(diǎn)到直線的距離是,于是有,

從而,與(*)式聯(lián)立:解之,可求出滿足條件的點(diǎn)有4個:

,,. 12分)

當(dāng)點(diǎn)的坐標(biāo)為,則,點(diǎn)到直線:的距離是,于是有,

從而,與(*)式聯(lián)立:,

解之,可求出滿足條件的點(diǎn)有4個:

,,. 14分)

綜合①②③,以上12個點(diǎn)各不相同且均在該橢圓上,因此,滿足條件的點(diǎn)共有12個.圖上橢圓上的12個點(diǎn)即為所求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的道物理題中隨機(jī)抽取道化學(xué)題中隨機(jī)抽取;道生物題中隨機(jī)抽取.使用合適的方法確定這個學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為,化學(xué)題的編號為,生物題的編號為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷某種“上海世博會”紀(jì)念品,每件按30元銷售,可獲利50%,設(shè)每件紀(jì)念品的成本為a元.

(1)試求a的值;

(2)公司在試銷過程中進(jìn)行了市場調(diào)查,發(fā)現(xiàn)銷售量y(件)與每件售價(jià)x(元)滿足關(guān)系y=-10x+800.設(shè)每天銷售利潤為W(元),求每天銷售利潤W(元)與每件售價(jià)x(元)之間的函數(shù)解析式;當(dāng)每件售價(jià)為多少時,每天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2014福建,文22】已知函數(shù)為常數(shù))的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線斜率為.

(1)的值及函數(shù)的極值;

(2)證明:當(dāng)時,

(3)證明:對任意給定的正數(shù),總存在,使得當(dāng)時,恒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆云南省云南師范大學(xué)附屬中學(xué)高三高考適應(yīng)性月考(五)文數(shù)】已知函數(shù).

(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;

(2)若時,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)(其中)滿足下列3個條件:

函數(shù)的圖象過坐標(biāo)原點(diǎn)

②函數(shù)的對稱軸方程為;

③方程有兩個相等的實(shí)數(shù)根,

.

1求函數(shù)的解析式;

2)求使不等式恒成立的實(shí)數(shù)的取值范圍;

3已知函數(shù)上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知動點(diǎn)M到點(diǎn)的距離等于M到點(diǎn)的距離的.

(1)求動點(diǎn)M的軌跡C的方程;

(2)若直線軌跡C沒有交點(diǎn),求的取值范圍;

(3)已知圓軌跡C相交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動點(diǎn)滿足,試探究是否存在兩個定點(diǎn)使得為定值?若存在的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

,曲線

過點(diǎn)

,且在點(diǎn)

處的切線方程為

.

(1)求

的值;

(2)證明:當(dāng)

時,

;

(3)若當(dāng)

時,

恒成立,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案