【題目】已知函數(shù)f(x)=|loga|x﹣1||(a>0,a≠1),若x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 + + + = .
【答案】2
【解析】解:不妨設(shè)a>1,
則令f(x)=|loga|x﹣1||=b>0,
則loga|x﹣1|=b或loga|x﹣1|=﹣b;
故x1=﹣ab+1,x2=﹣a﹣b+1,x3=a﹣b+1,x4=ab+1,
故 + = ,
+ = ;
故 + + + = +
= + =2;
所以答案是:2.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的零點的相關(guān)知識,掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo).即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車是指企業(yè)在校園、地鐵站點、公交站點、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進行調(diào)查研究,在調(diào)查過程中進行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:
租用單車數(shù)量(千輛) | 2 | 3 | 4 | 5 | 8 |
每天一輛車平均成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: ,方程乙: .
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點的殘差(也叫隨機誤差));
租用單車數(shù)量 (千輛) | 2 | 3 | 4 | 5 | 8 | |
每天一輛車平均成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計算模型甲與模型乙的殘差平方和及,并通過比較的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f (x)= 的定義域為A,m>0,函數(shù)g(x)=4 x﹣1(0<x≤m)的值域為B.
(1)當(dāng)m=1時,求 (R A)∩B;
(2)是否存在實數(shù)m,使得A=B?若存在,求出m的值; 若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學(xué)生在校月消費情況,隨機抽取了100名中學(xué)生進行調(diào)查.如圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學(xué)生稱為“高消費群”.
(1)求m,n的值,并求這100名學(xué)生月消費金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費群”與性別有關(guān)?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式: ,其中n=a+b+c+d)
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個結(jié)論,其中正確的是( )
A.若 ,則a<b
B.“a=3“是“直線l1:a2x+3y﹣1=0與直線l2:x﹣3y+2=0垂直”的充要條件
C.在區(qū)間[0,1]上隨機取一個數(shù)x,sin 的值介于0到 之間的概率是
D.對于命題P:?x∈R使得x2+x+1<0,則?P:?x∈R均有x2+x+1>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8﹣200=1000(元).設(shè)購買某商品得到的實際折扣率= .設(shè)某商品標(biāo)價為x元,購買該商品得到的實際折扣率為y.
(1)寫出當(dāng)x∈(0,1000]時,y關(guān)于x的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(2)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于 ?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( )
A.y=|x|
B.y=3﹣x
C.y=
D.y=﹣x2+4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生社團為了解“大數(shù)據(jù)時代”下大學(xué)生就業(yè)情況的滿意度,對20名學(xué)生進行問卷計分調(diào)查(滿分100分),得到如圖所示的莖葉圖:
(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;
(2)從打分在80分以上的同學(xué)隨機抽3人,求被抽到的女生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且曲線在處的切線與平行.
(1)求的值;
(2)當(dāng)時,試探究函數(shù)的零點個數(shù),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com