已知雙曲線
x2
2
-y2=1
與射線y=
1
2
x
(x≥0)公共點為P,過P作兩條傾斜角互補且不重合的直線,它們與雙曲線都相交且另一個交點分別為A,B(不同于P).
(1)求點P到雙曲線兩條漸近線的距離之積;
(2)設直線PA斜率為k,求k的取值范圍;
(3)求證直線AB的斜率為定值.
(1)由
x2
2
-y2=1
y=
1
2
x(x≥0)
,得P(2,1),
雙曲線
x2
2
-y2=1
的漸近線方程是
2
x-2y=0
2
x+2y=0
,
點P(2,1)到兩條漸近線
2
x-2y=0
2
x+2y=0
的距離分別是
d1=
|2
2
-2|
6
d2=
|2
2
+2|
6
,
∴點P到雙曲線兩條漸近線的距離之積
d1d2=
8-4
6
=
2
3

(2)設直線PA斜率為k,則PA的方程為:y-1=k(x-2),
即kx-y+1-2k=0,
x2
2
-y2=1
kx-y+1-2k=0
,消去y,并整理,得(1-2k2)x2+(8k2-4k)x+8k-8k2-4=0,
∵直線PA與雙曲線
x2
2
-y2=1
有兩個交點,
∴△=(8k2-4k)2-4(1-2k2)(8k-8k2-4)>0,
即k2-2k+1>0,
∴k≠1.
故k的取值范圍是(-∞,1)∪(1,+∞).
(3)∵P(2,1),設A(x1,y1),B(x2,y2),
∵PA和PB是兩條傾斜角互補且不重合的直線,
設PA斜率是m,則PB斜率是-m
則PA:y=m(x-2)+1,PB:y=-m(x-2)+1,
分別與雙曲線方程聯(lián)立,得
x12
2
-(mx1-2m+1)2=1
,
(1-2m2)x12+(8m2-4m)x1+8m-8m2-4=0,
∵2是方程的一個根,
x1=
8m2-4m
2m2-1
-2,
同理,x2=
8m2+4m
2m2-1
-2,
x1-x2=
8m
1-2m2
,
y1=m(
8m2-4m
2m2-1
-4)+1
,
y2=-m(
8m2+4m
2m2-1
-4)+1
,
∴y1-y2=
8m
2m2-1
,
kAB=
y1-y2
x1-x2
=
8m
2m2-1
8m
1-2m2
=-1.
即直線AB的斜率為定值-1.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別是F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在雙曲線上、則
PF1
PF2
=( 。
A、-12B、-2C、0D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1,F(xiàn)2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x22
-y2=1
,過點P(0,1)作斜率k<0的直線l與雙曲線恰有一個交點.
(1)求直線l的方程;
(2)若點M在直線l與x≥0,y≥0所圍成的三角形的三條邊上及三角形內運動,求z=-x+y的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
2
-
y2
2
=1
的準線過橢圓
x2
4
+
y2
b2
=1
的焦點,且直線y=kx+2與橢圓在第一象限至多只有一個交點,則實數(shù)k的取值范圍為
(-∞,1]∪[-
1
2
,+∞)
(-∞,1]∪[-
1
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•嘉定區(qū)三模)已知雙曲線
x2
2
-
y2
b2
=1(b>0)
的左、右焦點分別為F1、F2,其一條漸近線方程為y=x,點P(
3
,y0)
在該雙曲線上,則
PF1
PF2
的夾角大小為(  )

查看答案和解析>>

同步練習冊答案