已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF平面PEC;
(Ⅱ)求PC與平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.
(Ⅰ)取PC的中點(diǎn)O,連接OF、
OE.∴FODC,且FO=
1
2
DC
∴FOAE
又E是AB的中點(diǎn).且AB=DC.∴FO=AE.
∴四邊形AEOF是平行四邊形.∴AFOE
又OE?平面PEC,AF?平面PEC
∴AF平面PEC
(Ⅱ)連接AC
∵PA⊥平面ABCD,∴∠PCA是直線PC與平面ABCD所成的角
在Rt△PAC中,tan∠PCA=
PA
AC
=
1
5
=
5
5

即直線PC與平面ABCD所成的角正弦值為
6
6

(Ⅲ)作AM⊥CE,交CE的延長線于M.連接PM,由三垂線定理.得PM⊥CE
∴∠PMA是二面角P-EC-D的平面角.
由△AME△CBE,可得AM=
2
2
,∴tan∠PMA=
PA
AM
=
2

∴二面角P一EC一D的余弦值為
6
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行六面體ABCD-A1B1C1D1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

四棱錐P-ABCD的底面為菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6
,
E為PC的中點(diǎn).
(1)求二面角E-AD-C的正切值;
(2)在線段PC上是否存在一點(diǎn)M,使PC⊥平面MBD成立?若存在,求出MC的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在五面體P-ABCD中,底面ABCD是平行四邊形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求證:BD⊥平面PAD;
(2)若PD與底面ABCD成60°的角,試求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)O在二面角α-AB-β的棱上,點(diǎn)P在α內(nèi),且∠POB=45°.若對于β內(nèi)異于O的任意一點(diǎn)Q,都有∠POQ≥45°,則二面角α-AB-β的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求證:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直三棱柱ABC-A1B1C1的側(cè)棱長為1,底面ABC為直角三角形,AB=AC=1,∠BAC=90°.則二面角B1-AC-B的大小為______;點(diǎn)A到平面BCC1B1的距離等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在一個60°的二面角的棱上,有兩個點(diǎn)A、B,AC、BD分別是在這個二面角的兩個半平面內(nèi)垂直于AB的線段,且AB=4cm,AC=6cm,BD=8cm,則CD的長為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是線段AE上的動點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案