【題目】在極坐標(biāo)系中,點 P的極坐標(biāo)是 ,曲線 C的極坐標(biāo)方程為 .以極點為坐標(biāo)原點,極軸為 x軸的正半軸建立平面直角坐標(biāo)系,斜率為﹣1的直線 l經(jīng)過點P.
(1)寫出直線 l的參數(shù)方程和曲線 C的直角坐標(biāo)方程;
(2)若直線 l和曲線C相交于兩點A,B,求 的值.
【答案】
(1)解:由曲線C的極坐標(biāo)方程 可得 ,
即 ,
因此曲線C的直角坐標(biāo)方程為 ,
即 ,點P的直角坐標(biāo)為 ,
直線l的傾斜角為135°,
所以直線l的參數(shù)方程為 為參數(shù)).
(2)解:將 為參數(shù))代入 ,
得 ,設(shè)A,B對應(yīng)參數(shù)分別為t1t2,
有 ,根據(jù)直線參數(shù)方程 t的幾何意義,得:
【解析】(1)由曲線C的極坐標(biāo)方程能求出曲線C的直角坐標(biāo)方程,求出點P的直角坐標(biāo)為 ,直線l的傾斜角為135°,由此能求出直線l的參數(shù)方程.(2)將 為參數(shù))代入 ,得 ,設(shè)A,B對應(yīng)參數(shù)分別為t1t2 , 根據(jù)直線參數(shù)方程t的幾何意義,能求出結(jié)果.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 f(x+1)=f(x﹣1),f(x)=f(﹣x+2),方程 f(x)=0 在[0,1]內(nèi)有且只有一個 根 x=,則 f(x)=0 在區(qū)間[0,2016]內(nèi)根的個數(shù)為( )
A. 2015 B. 1007 C. 2016 D. 1008
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】愛心超市計劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當(dāng)天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份每天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;
(2)當(dāng)六月份有一天這種酸奶的進(jìn)貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過點,且圓心在直線上.
(1)求圓的方程;
(2)平面上有兩點,點是圓上的動點,求的最小值;
(3)若是軸上的動點,分別切圓于兩點,試問:直線是否恒過定點?若是,求出定點坐標(biāo),若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x﹣a|(a∈R).
(1)若 a=1,求不等式 f(x)≥5的解集;
(2)若函數(shù)f(x)的最小值為3,求實數(shù) a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)模式的改變,電商已成為當(dāng)今城鄉(xiāng)種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),每售出噸該商品可獲利潤萬元,未售出的商品,每噸虧損萬元根據(jù)往年的銷售資料,得到該商品一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了噸該商品,現(xiàn)以單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬 元)表示該電商下“個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(1)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;
(2)將表示為的函數(shù),求出該函數(shù)表達(dá)式;
(3)在頻率分布直方圖的市場需求量分組中,若以市場需求量落入該區(qū)間的頻率作為市場需求量的概率,求該季度利潤不超過萬元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左手從甲袋中取球,用右手從乙袋中取球,
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若一次在同一袋中取出兩球,如果兩球顏色相同則稱這次取球獲得成功。某人第一次左手先取兩球,第二次右手再取兩球,記兩次取球的獲得成功的次數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對稱軸為,且與軸兩個交點的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點平移到原點,請說出平移的方式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com