(本小題滿分12分)
如圖5,在圓錐中,已知=,⊙O的直徑,是的中點(diǎn),為的中點(diǎn).
(Ⅰ)證明:平面 平面;
(Ⅱ)求二面角的余弦值。
解法1:連結(jié)OC,因?yàn)?sub>
又底面⊙O,AC底面⊙O,所以,
因?yàn)镺D,PO是平面POD內(nèi)的兩條相交直線,所以平面POD,
而平面PAC,所以平面POD平面PAC。
(II)在平面POD中,過O作于H,由(I)知,平面
所以平面PAC,又面PAC,所以
在平面PAO中,過O作于G,
連接HG,
則有平面OGH,
從而,故為二面角B—PA—C的平面角。
在
在
在
在
所以
故二面角B—PA—C的余弦值為
解法2:(I)如圖所示,以O(shè)為坐標(biāo)原點(diǎn),OB、OC、OP所在直線分別為x軸、y軸,z軸建立空間直角坐標(biāo)系,則
,
設(shè)是平面POD的一個(gè)法向量,
則由,得
所以
設(shè)是平面PAC的一個(gè)法向量,
則由,
得
所以
得。
因?yàn)?sub>
所以從而平面平面PAC。
(II)因?yàn)閥軸平面PAB,所以平面PAB的一個(gè)法向量為
由(I)知,平面PAC的一個(gè)法向量為
設(shè)向量的夾角為,則
由圖可知,二面角B—PA—C的平面角與相等,
所以二面角B—PA—C的余弦值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:
(I)他們選擇的項(xiàng)目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤(rùn)與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com