已知橢圓 經(jīng)過點其離心率為.

   (Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線距離的最小值.

解:(Ⅰ)由已知,,所以    ①   …………………1分

   又點在橢圓上,所以 ,      ②   …………………2分

 由①②解之,得.

   故橢圓的方程為.                        …………………5分

  (Ⅱ) 當(dāng)直線有斜率時,設(shè)時,

則由    

消去得,,         …………………6分

,  ③…………7分

設(shè)AB、點的坐標(biāo)分別為,則:

,…………8分

   由于點在橢圓上,所以 .                       ……… 9分

   從而,化簡得,經(jīng)檢驗滿足③式.

                                                           ………10分

       又點到直線的距離為:

              ………11分  

當(dāng)且僅當(dāng)時等號成立          …………12分

當(dāng)直線無斜率時,由對稱性知,點一定在軸上,

從而點為,直線,所以點到直線的距離為1   ……13分

所以點到直線的距離最小值為                             ……14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012屆云南省建水一中高三9月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)
已知橢圓 經(jīng)過點其離心率為
(1)求橢圓的方程
(2)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省聊城市高三上學(xué)期1月份模塊檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓 經(jīng)過點其離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年云南省高三9月月考文科數(shù)學(xué) 題型:解答題

(本小題滿分12分)

   已知橢圓 經(jīng)過點其離心率為

   (1)求橢圓的方程

(2)設(shè)直線與橢圓相交于AB兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點. 求到直線的距離的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市海淀區(qū)高三下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

(本小題共14分)

已知橢圓 經(jīng)過點其離心率為.

   (Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于A、B兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓 經(jīng)過點其離心率為.

   (Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線與橢圓相交于AB兩點,以線段為鄰邊作平行四邊形OAPB,其中頂點P在橢圓上,為坐標(biāo)原點.求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案