已知M(a,2)是拋物線y2=2x上的一點,直線MP、MQ分別與拋物線交于P、Q兩點,且直線MP、MQ的傾斜角之和為π,則直線PQ的斜率為( 。
A、
1
4
B、
1
2
C、-
1
2
D、-
1
4
分析:將M代入拋物線求出a,利用直線MP,MQ的傾斜角的和為π則其斜率互為相反數(shù),設出MP的方程,將方程與拋物線的方程聯(lián)立,利用韋達定理求出P的縱坐標與k的關系;同理得到Q的縱坐標與k的關系;利用兩點連線的斜率公式求出PQ的斜率.
解答:解:將(a,2)代入拋物線方程得a=2即M(2,2)
設直線MP的斜率為k;則直線MQ的斜率為-k,設p(x1,y1),Q(x2,y2
直線MP的方程為y-2=k(x-2)
y-2=k(x-2)
y2=2x
消x得ky2-2y+4-4k=0
由韋達定理得y1+2=
2
k

同理y2+2=-
2
k

∴y1+y2=-4
PQ的斜率為
y2-y1
x2-x1
=
y2-y1
y22
2
-
y12
2
=
2
y1+y2
=-
1
2

故選C
點評:本題考查解決直線與圓錐曲線的位置關系常用的方法是將它們的方程聯(lián)立,通過韋達定理得到交點的坐標的關系、考查兩點連線的斜率公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知點D(0,-2),過點D作拋線C1:x2=2py(p>0)的切線l,切點A在第一象限,如圖.
(1)求切點A的縱坐標;
(2)若離心率為
3
2
的橢圓C:
y2
a 2
+
x2
b2
=1(a>b>0)恰好經(jīng)過切點A,設切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k2,k3,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.
(3)設P、Q分別是(2)中的橢圓C2的右頂點和上頂點,M是橢圓C2在第一象限的任意一點,求四邊形OPMQ面積的最大值以及此時M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省實驗中學2011屆高三5月針對性練習數(shù)學理綜試題 題型:044

已知點D(0,-2),過點D作拋線C1:x2=2py(p>0)的切線l,切點A在第一象限,如圖.

(1)求切點A的縱坐標;

(2)若離心率為的橢圓恰好經(jīng)過切點A,設切線l交橢圓的另一點為B,記切線l,OA,OB的斜率分別為k,k1,k2,若2k1+k2=3k,求拋物線C1和橢圓C2的方程.

(3)設P、Q分別是(2)中的橢圓C2的右頂點和上頂點,M是橢圓C2在第一象限的任意一點,求四邊形OPMQ面積的最大值以及此時M點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市浦東新區(qū)高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市浦東新區(qū)高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案