【題目】如圖,橢圓W:的焦距與橢圓Ω:+y2=1的短軸長相等,且W與Ω的長軸長相等,這兩個橢圓的在第一象限的交點(diǎn)為A,直線l經(jīng)過Ω在y軸正半軸上的頂點(diǎn)B且與直線OA(O為坐標(biāo)原點(diǎn))垂直,l與Ω的另一個交點(diǎn)為C,l與W交于M,N兩點(diǎn).

(1)求W的標(biāo)準(zhǔn)方程:

(2)求

【答案】(1);(2) .

【解析】

(1)由題意可得,求出a2,b2,即可得到W的標(biāo)準(zhǔn)方程,

(2)先求出直線l的方程為y=﹣3x+1,分別與橢圓W和橢圓Ω,聯(lián)立方程組,求出BCMN,比較即可

(1)由題意可得,

W的標(biāo)準(zhǔn)方程為

(2)聯(lián)立

,

易知B(0,1),

l的方程為y=﹣3x+1.

聯(lián)立,得37x2﹣24x=0,

x=0,

,

聯(lián)立,得31x2﹣18x﹣9=0,

設(shè)Mx1,y1),Nx2,y2),

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 稿酬所得以個人每次取得的收入,定額或定率減除規(guī)定費(fèi)用后的余額為應(yīng)納稅所得額,每次收入不超過4000元,定額減除費(fèi)用800元;每次收入在4000元以上的,定率減除20%的費(fèi)用適用20%的比例稅率,并按規(guī)定對應(yīng)納稅額減征30%,計(jì)算公式為:

(1)每次收入不超過4000元的:應(yīng)納稅額=(每次收入額-800)×20%×(1-30%)

(2)每次收入在4000元以上的:應(yīng)納稅額=每次收入額×(1-20%)×20%×(1-30%)已知某人出版一份書稿,共納稅280元,這個人應(yīng)得稿費(fèi)(扣稅前)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,長軸長為,直線交橢圓于不同的兩點(diǎn)、.

1)求橢圓的方程;

2)若,且,求的值(點(diǎn)為坐標(biāo)原點(diǎn));

3)若坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

1)求曲線的普通方程及直線的直角坐標(biāo)方程;

2)求曲線上的點(diǎn)到直線的距離的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春季以來,在非洲豬瘟、環(huán)保禁養(yǎng)、上行周期等因素形成的共振條件下,豬肉價格連續(xù)暴漲.某養(yǎng)豬企業(yè)為了抓住契機(jī),決定擴(kuò)大再生產(chǎn),根據(jù)以往的養(yǎng)豬經(jīng)驗(yàn)預(yù)估:在近期的一個養(yǎng)豬周期內(nèi),每養(yǎng)百頭豬,所需固定成本為20萬元,其它為變動成本:每養(yǎng)1百頭豬,需要成本14萬元,根據(jù)市場預(yù)測,銷售收入(萬元)與(百頭)滿足如下的函數(shù)關(guān)系:(注:一個養(yǎng)豬周期內(nèi)的總利潤(萬元)=銷售收入-固定成本-變動成本).

1)試把總利潤(萬元)表示成變量(百頭)的函數(shù);

2)當(dāng)(百頭)為何值時,該企業(yè)所獲得的利潤最大,并求出最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是函數(shù)定義域的一個子集,若存在,使得成立,則稱的一個“準(zhǔn)不動點(diǎn)”,也稱在區(qū)間上存在準(zhǔn)不動點(diǎn),已知,.

(1)若,求函數(shù)的準(zhǔn)不動點(diǎn);

(2)若函數(shù)在區(qū)間上存在準(zhǔn)不動點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線上一點(diǎn)到焦點(diǎn)的距離為5

1)求拋物線的方程;

2)過點(diǎn)的直線與拋物線交于兩點(diǎn), 過點(diǎn)作直線的垂線,垂足為,判斷:三點(diǎn)是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E,F分別為棱AA1,CC1的中點(diǎn),則在空間中與三條直線A1D1,EF,CD都相交的直線(

A.不存在B.有且只有兩條C.有且只有三條D.有無數(shù)條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)求函數(shù)的單調(diào)區(qū)間;

3)判斷函數(shù)是否存在公切線,如果不存在,請說明理由,如果存在請指出公切線的條數(shù)

查看答案和解析>>

同步練習(xí)冊答案