【題目】過棱柱不相鄰兩條側棱的截面是 (  )

A. 矩形 B. 正方形

C. 梯形 D. 平行四邊形

【答案】D

【解析】因為棱柱的側棱平行且相等,故過棱柱不相鄰的兩條側棱的截面是平行四邊形.

故選D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是

A. 四邊形確定一個平面

B. 經(jīng)過一條直線和一個點確定一個平面

C. 經(jīng)過三點確定一個平面

D. 兩兩相交且不共點的三條直線確定一個平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?/span>倍,得到曲線.

(1)寫出的參數(shù)方程;

(2)設直線的交點為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求:過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎”;乙說:“甲、丙都未獲獎”,丙說:“我獲獎了”,丁說:“是乙獲獎”,四位歌手的話只有兩位是對的,則獲獎的歌手是 (  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】x2y2-4x+6y=0和圓x2y2-6x=0交于AB兩點,則直線AB的方程是(  )

A. xy+3=0 B. 3xy-9=0

C. x+3y=0 D. 4x-3y+7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率,過點的直線與原點的距離為

1求橢圓的方程;

2分別為橢圓的左、右焦點,過作直線交橢圓于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在R上的奇函數(shù),且對任意a、b,當時,都有.

1,試比較的大小關系;

2對任意恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國西部某省4A級風景區(qū)內住著一個少數(shù)民族村,該村投資了800萬元修復和加強民俗文化基礎設施,據(jù)調查,修復好村民俗文化基礎設施后,任何一個月內(每月按30天計算)每天的旅游人數(shù)f(x)與第x天近似地滿足 (千人),且參觀民俗文化村的游客人均消費g(x)近似地滿足g(x)=143﹣|x﹣22|(元).

(1)求該村的第x天的旅游收入p(x)(單位千元,1≤x≤30,x∈N*)的函數(shù)關系;

(2)若以最低日收入的20%作為每一天的計量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線的焦點到準線的距離與橢圓的長半軸相等,設橢圓的右頂點為,在第一象限的交點為為坐標原點,且的面積為

1求橢圓的標準方程;

2若過點的直線交拋物線兩點

求證:恒為鈍角;

射線分別交橢圓兩點,記的面積分別是,問是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由

查看答案和解析>>

同步練習冊答案