已知橢圓:,離心率為,焦點(diǎn)過(guò)的直線交橢圓于兩點(diǎn),且的周長(zhǎng)為4.
(Ⅰ)求橢圓方程;
(Ⅱ) 直線與y軸交于點(diǎn)P(0,m)(m0),與橢圓C交于相異兩點(diǎn)A,B且.若,求m的取值范圍。

(Ⅰ) ;(Ⅱ)

解析試題分析:(1)設(shè)C:(A>b>0),由條件知A-C=,由此能導(dǎo)出C的方程.(Ⅱ)由題意可知λ=3或O點(diǎn)與P點(diǎn)重合.當(dāng)O點(diǎn)與P點(diǎn)重合時(shí),m=0.當(dāng)λ=3時(shí),直線l與y軸相交,設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2),再由根的判別式和韋達(dá)定理進(jìn)行求解.
試題解析:(1)設(shè)C:(A>b>0),設(shè)C>0,,由條件知A-C=,,∴A=1,b=C=,故C的方程為:;
(Ⅱ)設(shè)與橢圓C的交點(diǎn)為A(,),B(,)。將y=kx+m代入
,所以①,
.因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/a7/f/1ddmu2.png" style="vertical-align:middle;" />,所以,
消去,所以,
,當(dāng)時(shí),
所以,由①得,解得
考點(diǎn):1、直線與圓錐曲線的綜合問(wèn)題;2、向量在幾何中的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知圓心坐標(biāo)為的圓軸及直線均相切,切點(diǎn)分別為、,另一圓與圓、軸及直線均相切,切點(diǎn)分別為、

(1)求圓和圓的方程;
(2)過(guò)點(diǎn)作的平行線,求直線被圓截得的弦的長(zhǎng)度;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓過(guò)點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知圓M:(x+1)2+y2=1,圓N:(x-1)2+y2=9,動(dòng)圓P與圓M外切并與圓N內(nèi)切,圓心P的軌跡為曲線 C
(Ⅰ)求C的方程;
(Ⅱ)l是與圓P,圓M都相切的一條直線,l與曲線C交于A,B兩點(diǎn),當(dāng)圓P的半徑最長(zhǎng)時(shí),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是橢圓的右焦點(diǎn),圓軸交于兩點(diǎn),是橢圓與圓的一個(gè)交點(diǎn),且 
(Ⅰ)求橢圓的離心率;
(Ⅱ)過(guò)點(diǎn)與圓相切的直線的另一交點(diǎn)為,且的面積為,求橢圓的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

點(diǎn)P是橢圓外的任意一點(diǎn),過(guò)點(diǎn)P的直線PA、PB分別與橢圓相切于A、B兩點(diǎn)。
(1)若點(diǎn)P的坐標(biāo)為,求直線的方程。
(2)設(shè)橢圓的左焦點(diǎn)為F,請(qǐng)問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否總是相等?若是,請(qǐng)給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若過(guò)點(diǎn)C(-1,0)且斜率為的直線與橢圓相交于不同的兩點(diǎn),試問(wèn)在軸上是否存在點(diǎn),使是與無(wú)關(guān)的常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn)是橢圓上一點(diǎn),分別為的左右焦點(diǎn),的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),過(guò)點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分別為矩形四條邊的中點(diǎn),以HF、GE所在直線分別為x,y軸建立直角坐標(biāo)系(如圖所示).若R、R′分別在線段0F、CF上,且.

(Ⅰ)求證:直線ER與GR′的交點(diǎn)P在橢圓+=1上;
(Ⅱ)若M、N為橢圓上的兩點(diǎn),且直線GM與直線GN的斜率之積為,求證:直線MN過(guò)定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案