方程x3-3x-m=0在[0,1]上有實數(shù)根,則實數(shù)m的取值范圍
[-2,0]
[-2,0]
分析:分離參數(shù)m=x3-3x,構(gòu)造函數(shù)f(x)=x3-3x,求導(dǎo)函數(shù)可得在[0,1]上,函數(shù)f(x)單調(diào)遞減,從而可求實數(shù)m的取值范圍.
解答:解:由題意,m=x3-3x,
令f(x)=x3-3x,求導(dǎo)函數(shù)可得f'(x)=3x2-3=3(x+1)(x-1)
∴在[0,1]上,f'(x)<0,函數(shù)f(x)單調(diào)遞減
∵f(0)=0,f(1)=1-3=-2
∴實數(shù)m的取值范圍是[-2,0]
故答案為:[-2,0]
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,解題的關(guān)鍵是分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

9、方程x3-3x-m=0在[0,1]上有實數(shù)根,則m的最大值是
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

10、關(guān)于x的方程x3-3x+m-3=0有三個不同的實數(shù)根,則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x3-3x-m=0有且只有兩個不同的實根,則實數(shù)m=
±2
±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x3-3x+m=0在[0,2]上有解,則實數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案