已知向量,,函數(shù)的最大值為6.
(Ⅰ)求;
(Ⅱ)將函數(shù)的圖象向左平移個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖象.求在上的值域.
(Ⅰ)A=6;(Ⅱ)g(x)在上的值域?yàn)椋?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904090269332846/SYS201403090409414746443207_DA.files/image002.png">
【解析】
試題分析:(Ⅰ)由向量的數(shù)量積的定義得:,然后降次化一得:,由此得A=6.
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904090269332846/SYS201403090409414746443207_DA.files/image004.png">,所以將函數(shù)的圖象向左平移個(gè)單位后得到y(tǒng)=6sin=6sin的圖象;再將得到圖象上各點(diǎn)橫坐標(biāo)縮短為原來的倍,
縱坐標(biāo)不變,得到=6sin的圖象.即g(x)=6sin.因?yàn)閤∈,所以4x+∈.故g(x)在上的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904090269332846/SYS201403090409414746443207_DA.files/image015.png">.
試題解析:(Ⅰ) .2分
=A=Asin ..4分
因?yàn)锳>0,由題意知,A=6. .6分
(Ⅱ)由(Ⅰ)=6sin.將函數(shù)的圖象向左平移個(gè)單位后得到y(tǒng)=
6sin=6sin的圖象;再將得到圖象上各點(diǎn)橫坐標(biāo)縮短為原來的倍,
縱坐標(biāo)不變,得到=6sin的圖象。 8分
因此,g(x)=6sin.因?yàn)閤∈,所以4x+∈.
故g(x)在上的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014030904090269332846/SYS201403090409414746443207_DA.files/image015.png">. .12分
考點(diǎn):三角變換及三角函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012屆高考新課標(biāo)模擬試卷理科數(shù)學(xué) 題型:解答題
已知向量,若函數(shù)
的最小正周期為
(Ⅰ)求的值
(Ⅱ)若將函數(shù)的圖象向右平移個(gè)單位,再將所得到的圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象,求的單調(diào)遞減區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知向量,,函數(shù)的最大值為.
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)中,,角所對的邊分別是,且,求的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com