在平面直角坐標系中,從下列五個點:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三個,這三點能構(gòu)成三角形的概率是( 。
A、
2
5
B、
3
5
C、
4
5
D、1
考點:古典概型及其概率計算公式
專題:概率與統(tǒng)計
分析:本題為古典概型,利用列舉法解答即可,注意構(gòu)成三角形的條件是三點不共線.
解答: 解:從5個點中取3個點,列舉得ABC,ABD,ABE,ACD,ACE,ADE,BCD,BCE,BDE,CDE共有10個基本事件,而其中ACE,BCD兩種情況三點共線,其余8個均符合題意,故能構(gòu)成三角形的概率為
8
10
=
4
5
.、
故選:C.
點評:本題考查古典概型.古典概型需要把握基本事件,要等可能和可列舉.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,2),
b
=(x,1),u=
a
+2
b
,v=2
a
-
b
,且u∥v,則實數(shù)x的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2-2x+y2=0的圓心C到拋物線y2=4x的準線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為( 。
A、16B、12C、8D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果x>y>0,則
xyyx
xxyy
=( 。
A、(x-y)
y
x
B、(x-y)
x
y
C、(
x
y
)y-x
D、(
x
y
)x-y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x),恒有|f(-x)|=|f(x)|,則函數(shù)f(x)為( 。
A、奇函數(shù)
B、偶函數(shù)
C、奇函數(shù)或偶函數(shù)
D、可能既不是奇函數(shù),也不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1F2,左、右頂點分別為A1,A2,T(1,
3
2
)為橢圓上一點,且TF2垂直于x軸.

(Ⅰ)求橢圓E的方程;
(Ⅱ)給出命題:“已知P是橢圓E上異于A1,A2的一點,直線 A1P,A2P分別交直線l:x=t(t為常數(shù))于不同兩點M,N,點Q在直線l上.若直線PQ與橢圓E有且只有一個公共點P,則Q為線段MN的中點”,寫出此命題的逆命題,判斷你所寫出的命題的真假,并加以證明;
(Ⅲ)試研究(Ⅱ)的結(jié)論,根據(jù)你的研究心得,在圖2中作出與該雙曲線有且只有一個公共點S的直線m,并寫出作圖步驟.注意:所作的直線不能與雙曲線的漸近線平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式
1
x+4
+
1
x+7
1
x+5
+
1
x+6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),過點A(-a,0),B(0,b)的直線的傾斜角為
π
6
,原點到該直線的距離為
2
2
,
(1)求橢圓的方程;
(2)是否存在實數(shù)k,直線y=kx+2交橢圓于Q,P兩點,以PQ為直徑的圓過點D(-1,0),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案