已知(sinx-2cosx)(3+2sinx+2cosx)=0,則
sin2x+2cos2x
1+tanx
的值為( 。
A、
8
5
B、
5
8
C、
2
5
D、
5
2
分析:通過(guò)方程求出tanx=2,然后求出cos2x的值,求出sin2x的值,即可求出表達(dá)式的值.
解答:解:由(sinx-2cosx)(3+2sinx+2cosx)=0可得 sinx-2cosx=0 或者 sinx+cosx=-
3
2

可因?yàn)椋╯inx+cosx)的最小值為-
2
>-
3
2
,故sinx+cosx=-
3
2
舍去即sinx-2cosx=0 所以sinx=2cosx 所以tanx=2 所以1=sin2x+cos2x=5cos2x,故cos2x=
1
5
,
所以sin2x=2sinx•cosx=2×2cosx•cosx=4cos2x=
4
5

所以
sin2x+2cos2x
1+tanx
=
4
5
+
2
5
1+2
=
2
5

故選C.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力,注意公式的靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題,其中正確命題的個(gè)數(shù)為( 。
①在區(qū)間(0,+∞)上,函數(shù)y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三個(gè)是增函數(shù);
②命題p:?x∈R,sinx≤1.則¬p:?x0∈R,使sinx0>1;
③若函數(shù)f(x)是偶函數(shù),則f(x-1)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng);
④已知函數(shù)f(x)=
3x-2,      x≤2
log3(x-1),x>2
則方程f(x)=
1
2
有2個(gè)實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•成都一模)已知
sinx+cosx
sinx-cosx
=3
,則tanx的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,下列四個(gè)命題:
①將f(x)的圖象向右平移
π
2
個(gè)單位可得到g(x)的圖象;
②y=f(x)g(x)是偶函數(shù);
③f(x)與g(x)均在區(qū)間[-
π
4
π
4
]上單調(diào)遞增;
④y=
f(x)
g(x)
的最小正周期為2π.
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=sinx+cosx,g(x)=sinx-cosx,下列四個(gè)命題:
①將f(x)的圖象向右平移
π
2
個(gè)單位可得到g(x)的圖象;
②y=f(x)g(x)是偶函數(shù);
③y=
f(x)
g(x)
是以π為周期的周期函數(shù);
④對(duì)于?x1∈R,?x2∈R,使f(x1)>g(x2).
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列命題四個(gè)命題:
①函數(shù)y=sin(
π
4
-2x)
的單調(diào)遞增區(qū)間是[kπ-
π
8
,kπ+
8
](k∈Z)
;
②若x是第一象限的角,則y=sinx是增函數(shù);
α,β∈(0,
π
2
)
,且cosα<sinβ,則α+β>
π
2

④若sinx+siny=
1
3
,則siny-cos2x的最大值是
4
3

其中真命題的個(gè)數(shù)有( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案