(本小題13分)曲線上任意一點(diǎn)M滿足, 其中F(-F( 拋物線的焦點(diǎn)是直線y=x-1與x軸的交點(diǎn), 頂點(diǎn)為原點(diǎn)O.
(1)求,的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線滿足條件:①過的焦點(diǎn);②與交于不同
兩點(diǎn),,且滿足?若存在,求出直線的方程;若不
存在,說明理由.
(1) 的方程為:, 的方程為:。
(2)存在直線滿足條件,且的方程為或.
【解析】
試題分析:(1)由題意結(jié)合橢圓的定義和拋物線的焦點(diǎn)坐標(biāo),得到關(guān)系式。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,聯(lián)立方程組,結(jié)合韋達(dá)定理和向量數(shù)量積得到。
解:(1) 的方程為:, 的方程為:。
(2)假設(shè)存在這樣的直線,設(shè)其方程為,兩交點(diǎn)坐標(biāo)為,
由消去,得,
①
,②
,③
將①②代入③得,解得
所以假設(shè)成立,即存在直線滿足條件,且的方程為或.
考點(diǎn):本題主要考查了直線與橢圓的位置關(guān)系的運(yùn)用,以及圖像的變換,以及向量的數(shù)量積來表示垂直關(guān)系的運(yùn)用。
點(diǎn)評:解決該試題的關(guān)鍵是能利用圖像變換準(zhǔn)確得到曲線的方程然后利用向量的數(shù)量積來求解得到參數(shù)的值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題13分)已知函數(shù)
(1)若實(shí)數(shù)求函數(shù)在上的極值;
(2)記函數(shù),設(shè)函數(shù)的圖像與軸交于點(diǎn),曲線在點(diǎn)處的切線與兩坐標(biāo)軸所圍成圖形的面積為則當(dāng)時(shí),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省南昌市高二2月份月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題13分)已知函數(shù)在點(diǎn)處的切線與直線垂直.
(1)若對于區(qū)間上任意兩個(gè)自變量的值都有,求實(shí)數(shù)的最小值;
(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題13分)已知兩定點(diǎn)滿足條件的點(diǎn)P的軌跡是曲線E,直線與曲線E交于A、B兩點(diǎn)。如果且曲線E上存在點(diǎn)C,使.
(Ⅰ)求曲線的方程;
(Ⅱ)求AB的直線方程;
(Ⅲ)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年福建省寧德市階段性考試數(shù)學(xué)卷 題型:解答題
(本小題13分)①在直角坐標(biāo)系中,表示什么曲線?(其中是常數(shù),且為正數(shù),為變量。)
②若點(diǎn)為圓:上任意一點(diǎn),且為原點(diǎn),,求的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com