如圖1,在矩形ABCD中,AB=2BC,點(diǎn)M在邊CD上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得如圖2四棱錐D′-ABCM.
(1)求證:平面D′EF⊥平面AMCB;
(2)若∠D′EF=
π
3
,直線D′F與平面ABCM所成角的大小為
π
3
,求直線AD′與平面ABCM所成角的正弦值.
考點(diǎn):平面與平面垂直的判定,直線與平面所成的角
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)根據(jù)圖形折疊前后的關(guān)系,易證AM⊥面D′EF,得出平面D′EF⊥平面AMCB.
(2)由(1)知,AM⊥面D′EF,所以平面ABCM⊥面D′EF,過D′作D′H⊥EF,則D′H⊥平面ABCM,∠D′FH是直線D'F與平面ABCM所成角,∠D′AH是直線AD′與平面ABCM所成角在直角三角形D′AH求解即可.
解答: (1)證明:∵將△ADM沿AM折起,使點(diǎn)D位于D′位置,
∴AM⊥D′E,AM⊥EF,D′E∩EF=E,
∴AM⊥面D′EF,
∵AM?平面AMCB,
∴平面D′EF⊥平面AMCB;
(2)解:由(1)知,AM⊥面D′EF,AM?平面ABCM,
∴平面ABCM⊥面D′EF,
過D′作D′H⊥EF,則D′H⊥平面ABCM,
∴∠D′FH也就是∠D′FE是直線D'F與平面ABCM所成角,
由已知,∠D′FE=
π
3
,
并且∠D′AH是所求的直線AD′與平面ABCM所成角.
∵∠D′EF=
π
3
,且∠D′FE=
π
3

在三角形△D′EF中,
∵∠D′EF=
π
3
,且∠D′FE=
π
3

∴是等邊三角形,∴D′E=EF,即DE=EF,
∴△DAF是等腰三角形.
設(shè)AD=2,∴AF=2,EF=
2
,四棱錐D′-ABCM的高D′H=
6
2

由于直線AD′與平面ABCM所成角為∠D′AH,
∴sin∠D′AH=
D′H
AD′
=
6
4
點(diǎn)評:本題考查直線與平面、平面與平面位置關(guān)系的判斷,線面角求解,考查空間想象能力、推理論證、計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

PA,PC分別切⊙O于A,C,AB是⊙O的直徑,CD⊥AB于D,PB交CD于E,求證:ED=EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,底面△ABC是邊長為a的正三角形,側(cè)棱長為
2
2
a
,點(diǎn)D在棱A1C1上.
(1)若A1D=DC1,求證:直線BC1∥平面AB1D;
(2)求AB1與側(cè)面BCC1B1所成角的大小;
(3)請?jiān)诶釧1C1確定點(diǎn)D的位置,使二面角A1-AB1-D的平面角為
π
4
,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=ax(ax-3a2-1)(a>0且a≠0)在區(qū)間[0,+∞)單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點(diǎn)F(4,0)、與y軸正半軸交于點(diǎn)E(0,4),邊長為4的正方形ABCD的頂點(diǎn)D與原點(diǎn)O重合,頂點(diǎn)A與點(diǎn)E重合,頂點(diǎn)C與點(diǎn)F重合;
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運(yùn)動(dòng),并且邊BC所在的直線始終與x軸垂直,拋物線與邊AB交于點(diǎn)P且同時(shí)與邊CD交于點(diǎn)Q.設(shè)點(diǎn)A的坐標(biāo)為(m,n)
①當(dāng)PO=PF時(shí),分別求出點(diǎn)P和點(diǎn)Q的坐標(biāo)及PF所在直線l的函數(shù)解析式;
②當(dāng)n=2時(shí),若P為AB邊中點(diǎn),請求出m的值;
(3)若點(diǎn)B在第(2)①中的PF所在直線l上運(yùn)動(dòng),且正方形ABCD與拋物線有兩個(gè)交點(diǎn),請直接寫出m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為直角梯形,∠DAB=∠ABC=90°,PA⊥平面ABCD,PA=AB=BC=2,AD=1.
(Ⅰ)求證:BC⊥平面PAB;
(Ⅱ)求平面PAB與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)若AD=CD,求證:BD⊥AC;
(Ⅱ)求二面角B-CD-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四面體P-ABC中,PA⊥平面ABC,AB⊥BC,PA=2,AC=2
2
.AB=
2
.D為PA的中點(diǎn),M為CD的中點(diǎn),N為PB上一點(diǎn),且PN=3BN.
(Ⅰ)求證:MN⊥PA;
(Ⅱ)求二面角B-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC和△ACD中,∠ACB=∠ADC=90°,∠BAC=∠CAD,⊙O是以AB為直徑的圓,DC的延長線與AB的延長線交于點(diǎn)E.若EB=6,EC=6
2
,則BC的長為
 

查看答案和解析>>

同步練習(xí)冊答案