【題目】如圖,在中,,D是AE的中點,C是線段BE上的一點,且,,將沿AB折起使得二面角是直二面角.
(l)求證:CD平面PAB;
(2)求直線PE與平面PCD所成角的正切值.
【答案】(1)證明見解析.
(2).
【解析】分析:(1)推導(dǎo)出是的斜邊上的中線,從而是的中點,由此能證明平面;
(2)三棱錐的體積為,由此能求出結(jié)果.
詳解:(1)因為,所以,又,,
所以,又因為,
所以是的斜邊上的中線,
所以是的中點,又因為是的中點.所以是的中位線,所以,
又因為平面,平面,所以平面.
(2)據(jù)題設(shè)分析知,,,兩兩互相垂直,以為原點,,,分別為,,軸建立如圖所示的空間直角坐標系:
因為,且,分別是,的中點,
所以,,
所以,,,,
所以,,,
設(shè)平面的一個法向量為,
則,即,所以,令,則,
設(shè)直線與平面所成角的大小為,則.
故直線與平面所成角的正切值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,,成立,求的取值范圍;
(Ⅲ)設(shè)曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對任意x,y∈R,總有f(x)+f(y)=f(x+y),且當x>0時,f(x)<0,f(1)=-.
(1)求證:f(x)是R上的單調(diào)減函數(shù).
(2)求f(x)在[-3,3]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )+sin(2x﹣ )+2cos2x﹣1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[ ]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知曲線的方程是(,).
(1)當,時,求曲線圍成的區(qū)域的面積;
(2)若直線:與曲線交于軸上方的兩點,,且,求點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程兩實數(shù)根分別為x1、x2,且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中是自然常數(shù).
(1)判斷函數(shù)在內(nèi)零點的個數(shù),并說明理由;
(2),,使得不等式成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間[2,3]上有最大值1.
(1)求的值;
(2)求函數(shù)在區(qū)間上的值域;
(3)若在[2,4]上單調(diào),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線過點,其參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)求的普通方程和的直角坐標方程;
(2)若與交于兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com