選修4-5:不等式選講
已知函數(shù)f(x)=log2(|x-1|+|x+2|-a).
(Ⅰ)當(dāng)a=7時,求函數(shù)f(x)的定義域;
(Ⅱ)若關(guān)于x的不等式f(x)≥3的解集是R,求實(shí)數(shù)a的取值范圍.
【答案】
分析:(Ⅰ)由題意可得,|x-1|+|x+2|>7,故有:
,或
,或
,把各個不等式組的解集取并集,即得所求.
(Ⅱ)由不等式可得|x-1|+|x+2|≥a+8恒成立,再由|x-1|+|x+2|的最小值等于3,故有a+8≤3,由此求得實(shí)數(shù)a的取值范圍.
解答:解:(Ⅰ)由題設(shè)知:|x-1|+|x+2|>7,
不等式的解集是以下不等式組解集的并集:
,或
,或
…(3分)
解得函數(shù)f(x)的定義域?yàn)椋?∞,-4)∪(3,+∞); …(5分)
(Ⅱ)不等式f(x)≥3,即|x-1|+|x+2|≥a+8,
∵x∈R時,恒有|x-1|+|x+2|≥|(x-1)-(x+2)|=3,…(8分)
∵不等式|x-1|+|x+2|≥a+8解集是R,
∴a+8≤3,
∴a的取值范圍是(-∞,-5]. …(10分)
點(diǎn)評:本題主要考查絕對值不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題.