設(shè)的定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x則x∈[-2,0]時(shí),的解析式為( )
A.f(x)=2+|x+1|
B.f(x)=3-|x+1|
C.f(x)=2-
D.f(x)=x+4
【答案】分析:①當(dāng)x∈[-2,-1]時(shí),則x+4∈[2,3],由題意可得:f(x+4)=x+4.再根據(jù)函數(shù)的周期性可得f(x)=f(x+4)=x+4.②當(dāng)x∈[-1,0]時(shí),則2-x∈[2,3],由題意可得:f(2-x)=2-x.再根據(jù)函數(shù)的周期性與函數(shù)的奇偶性可得函數(shù)的解析式.
解答:解:①當(dāng)x∈[-2,-1]時(shí),則x+4∈[2,3],
因?yàn)楫?dāng)x∈[2,3]時(shí),f(x)=x,
所以f(x+4)=x+4.
又因?yàn)閒(x)是周期為2的周期函數(shù),
所以f(x)=f(x+4)=x+4.
所以當(dāng)x∈[-2,-1]時(shí),f(x)=x+4.
②當(dāng)x∈[-1,0]時(shí),則2-x∈[2,3],
因?yàn)楫?dāng)x∈[2,3]時(shí),f(x)=x,
所以f(2-x)=2-x.
又因?yàn)閒(x)是周期為2的周期函數(shù),
所以f(-x)=f(2-x)=2-x.
因?yàn)楹瘮?shù)f(x)是定義在實(shí)數(shù)R上的偶函數(shù),
所以f(x)=f(-x)=f(2-x)=2-x.
所以由①②可得當(dāng)x∈[-2,0]時(shí),f(x)=3-|x+1|.
故選B.
點(diǎn)評:解決此類問題的關(guān)鍵是熟練掌握函數(shù)的有關(guān)性質(zhì),即周期性,奇偶性,單調(diào)性等有關(guān)性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)的定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x則x∈[-2,0]時(shí),的解析式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年海南省三亞市魯迅中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)的定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x則x∈[-2,0]時(shí),的解析式為( )
A.f(x)=2+|x+1|
B.f(x)=3-|x+1|
C.f(x)=2-
D.f(x)=x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市靈壽中學(xué)高三(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)的定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x則x∈[-2,0]時(shí),的解析式為( )
A.f(x)=2+|x+1|
B.f(x)=3-|x+1|
C.f(x)=2-
D.f(x)=x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)的定義在R上以2為周期的偶函數(shù),當(dāng)x∈[2,3]時(shí),f(x)=x則x∈[-2,0]時(shí),的解析式為( 。
A.f(x)=2+|x+1|B.f(x)=3-|x+1|C.f(x)=2-xD.f(x)=x+4

查看答案和解析>>

同步練習(xí)冊答案