分析 (1)求出x關(guān)于y的函數(shù),然后將x,y互換位置得到反函數(shù),注意自變量的取值范圍;
(2)f(x)=$\frac{a•{2}^{x}+{a}^{2}-2}{{2}^{x}+1}$=a+$\frac{{a}^{2}-a-2}{{2}^{x}+1}$,由復(fù)合函數(shù)的單調(diào)性可知若f(x)在定義域上單調(diào)遞增,則a2-a-2<0.
解答 解:(1)a=1時(shí),y=f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$,
∴2x=$\frac{2}{1-y}-1$,x=log2($\frac{2}{1-y}-1$),
∴f-1(x)=log2($\frac{2}{1-x}-1$),(-1<x<1).
(2)f(x)=$\frac{a•{2}^{x}+{a}^{2}-2}{{2}^{x}+1}$=a+$\frac{{a}^{2}-a-2}{{2}^{x}+1}$,
∵f(x)在定義域上單調(diào)遞增,
∴a2-a-2<0,
解得-1<a<2.
∴實(shí)數(shù)a的取值范圍是(-1,2).
點(diǎn)評(píng) 本題考查了反函數(shù)的求法及復(fù)合函數(shù)的單調(diào)性,注意定義域的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com