(本小題滿(mǎn)分16分)已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)(1)求的解析式;(2)設(shè),求證:當(dāng)時(shí),;(3)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說(shuō)明理由。
(Ⅰ)   (Ⅲ)存在實(shí)數(shù),使得當(dāng)時(shí),有最小值3
(1)設(shè),則,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823002920829270.gif" style="vertical-align:middle;" />是定義在上的奇函數(shù),所以 
故函數(shù)的解析式為…4分
(2)證明:當(dāng)時(shí),,設(shè)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823002921422544.gif" style="vertical-align:middle;" />,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減;當(dāng)時(shí),,此時(shí)單調(diào)遞增,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823002921516645.gif" style="vertical-align:middle;" />,所以當(dāng)時(shí),,此時(shí)單調(diào)遞減,所以
所以當(dāng)時(shí),      ……………………8分
(3)解:假設(shè)存在實(shí)數(shù),使得當(dāng)時(shí),有最小值是3,則
(ⅰ)當(dāng),時(shí),在區(qū)間上單調(diào)遞增,,不滿(mǎn)足最小值是3
(ⅱ)當(dāng),時(shí),,在區(qū)間上單調(diào)遞增,,也不滿(mǎn)足最小值是3
(ⅲ)當(dāng),由于,則,故函數(shù) 是上的增函數(shù).所以,解得(舍去)
(ⅳ)當(dāng)時(shí),則當(dāng)時(shí),,此時(shí)函數(shù)是減函數(shù);
當(dāng)時(shí),,此時(shí)函數(shù)是增函數(shù).
所以,解得
綜上可知,存在實(shí)數(shù),使得當(dāng)時(shí),有最小值3  …………16分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) (R).
(1) 當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)的圖象與軸有且只有一個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分)設(shè)是函數(shù)的一個(gè)極值點(diǎn)。
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;(2)設(shè),若存在,使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分13分)
已知函數(shù)的圖像與函數(shù)的圖象相切,記
(Ⅰ)求實(shí)數(shù)b的值及函數(shù)F(x)的極值;
(Ⅱ)若關(guān)于x的方程F(x)=k恰有三個(gè)不等的實(shí)數(shù)根,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)已知函數(shù)在(0,+)上是增函數(shù),在[–1,0]上是減函數(shù),且方程有三個(gè)根,它們分別為α,–1,β
(1)求c的值;(2)求證:;(3)求|αβ|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)  
已知,,.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)求在點(diǎn)處的切線與直線及曲線所圍成的封閉圖形的面積;
(3)是否存在實(shí)數(shù),使的極大值為3?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且滿(mǎn)足f(x)=2xf′(2013)-lnx,則f′(2013)=( 。
A.1B.-1C.
1
2013
D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=x•ex的導(dǎo)函數(shù)f′(x)=______;已知函數(shù)f(x)在區(qū)間[0,3]內(nèi)的圖象如圖所示,記k1=f′(1),k2=f′(2),k3=f(2)-f(1),則k1、k2、k3之間的大小關(guān)系為_(kāi)_____.(請(qǐng)用“>”連接).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

記函數(shù)f(x)=
x+1
x
的導(dǎo)函數(shù)為f′(x),則f′(1)的值為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案