【題目】已知點(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),則直線l的傾斜角的取值范圍是(
A.( ,
B.( ,
C.(
D.(0, )∪( ,π)

【答案】D
【解析】解:設(shè)直線l的傾斜角為θ∈[0,π).點A(1,﹣2),B( ,0). 直線l:ax﹣y﹣1=0(a≠0)經(jīng)過定點P(0,﹣1).
kPA= =﹣1,kPB= =
∵點(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),
∴kPA<a<kPB , ∴ ,tanθ≠0.
解得 ,
故選:D.
設(shè)直線l的傾斜角為θ∈[0,π).點A(1,﹣2),B( ,0).直線l:ax﹣y﹣1=0(a≠0)經(jīng)過定點P(0,﹣1).可得kPA=﹣1,kPB= .由點(1,﹣2)和( ,0)在直線l:ax﹣y﹣1=0(a≠0)的兩側(cè),可得kPA<a<kPB , ,tanθ≠0.即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如表資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

10

11

13

12

8

6

就診人數(shù)(個)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)3至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市連鎖店統(tǒng)計了城市甲、乙的各16臺自動售貨機在中午12:00至13:00間的銷售金額,并用莖葉圖表示如圖.則有(
A.甲城銷售額多,乙城不夠穩(wěn)定
B.甲城銷售額多,乙城穩(wěn)定
C.乙城銷售額多,甲城穩(wěn)定
D.乙城銷售額多,甲城不夠穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點,在這兩點處的切線互相垂直,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當(dāng)a=4時,解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時,求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,+∞)上的增函數(shù),實數(shù)a使得f(1﹣ax﹣x2)<f(2﹣a)對于任意x∈[0,1]都成立,則實數(shù)a的取值范圍是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3ax﹣1,a≠0
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=﹣1處取得極值,直線y=m與y=f(x)的圖象有三個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點P是圓O:x2+y2=1與x軸正半軸的交點,半徑OA在x軸的上方,現(xiàn)將半徑OA繞原點O逆時針旋轉(zhuǎn) 得到半徑OB.設(shè)∠POA=x(0<x<π),
(1)若 ,求點B的坐標(biāo);
(2)求函數(shù)f(x)的最小值,并求此時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第26屆世界大學(xué)生夏季運動會將于2011年8月12日到23日在深圳舉行 ,為了搞好接待工作,組委會在某學(xué)院招募了12名男志愿者和18名女志愿者。將這30名志愿者的身高編成如右所示的莖葉圖(單位:cm):

若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有“女高個子”才擔(dān)任“禮儀小姐”。

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中提取5人,再從這5人中選2人,那么至少有一人是“高個子”的概率是多少?

(2)若從所有“高個子”中選3名志愿者,用表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案