(2012•福建)(a+x)4的展開式中x3的系數(shù)等于8,則實(shí)數(shù)a=
2
2
分析:根據(jù)(a+x)4的展開式的通項(xiàng)公式為 Tr+1=
C
r
4
a4-r xr,令r=3可得(a+x)4的展開式中x3的系數(shù)等于
C
3
4
×a=8,由此解得a的值.
解答:解:(a+x)4的展開式的通項(xiàng)公式為 Tr+1=
C
r
4
 a4-r xr
令r=3可得(a+x)4的展開式中x3的系數(shù)等于
C
3
4
×a=8,解得a=2,
故答案為 2.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理,二項(xiàng)展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建模擬)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的漸近線方程是2x±y=0,則其離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(
2
3
3
,
π
2
),圓C的參數(shù)方程
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù)).
(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;
(Ⅱ)判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)數(shù)列{an}的通項(xiàng)公式an=ncos
2
,其前n項(xiàng)和為Sn,則S2012等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=1,b4=8,{an}的前10項(xiàng)和S10=55.
(Ⅰ)求an和bn;
(Ⅱ)現(xiàn)分別從{an}和{bn}的前3項(xiàng)中各隨機(jī)抽取一項(xiàng),寫出相應(yīng)的基本事件,并求這兩項(xiàng)的值相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•福建)如圖,橢圓E:
x2
a2
+
y2
b2
 =1(a>b>0)
的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8.
(Ⅰ)求橢圓E的方程.
(Ⅱ)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相較于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案