【題目】已知函數(shù),其中為常數(shù),為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若在區(qū)間,上的最小值為1,求的值;
(Ⅱ)若“,使”為假命題,求的取值范圍.
【答案】(Ⅰ);(Ⅱ)
【解析】
(Ⅰ)求得函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求函數(shù)的極值即最值,由題意知, 函數(shù)的最小值只能在或處取得,分別解方程求解即可.
(Ⅱ)若“,使”為假命題,等價(jià)于,為真命題,即,恒成立,通過(guò)分離參數(shù)法和構(gòu)造函數(shù)法,令,結(jié)合導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,由零點(diǎn)存在性定理求出函數(shù)的最小值,進(jìn)而求出實(shí)數(shù)的取值范圍即可.
(Ⅰ)由題意知,函數(shù)的導(dǎo)數(shù)為,
所以當(dāng)時(shí),,單調(diào)遞增,
當(dāng)時(shí),,單調(diào)遞減,
所以當(dāng)時(shí)有極大值即最大值,
即有的最小值只能在或處取得.
若(1),解得,此時(shí)與函數(shù)最小值為1相矛盾,
故不符合題意;
若(e),解得,此時(shí)符合題意;
綜上可知;
(Ⅱ)若“,使”為假命題,
即,為真命題,
等價(jià)于,可得恒成立,
化簡(jiǎn)可得,恒成立,
令,則,
令,則在上單調(diào)遞增,
因?yàn)?/span>,,
由零點(diǎn)存在性定理知,函數(shù)在,存在唯一零點(diǎn),
即有,則,
兩邊同時(shí)取以為底的對(duì)數(shù)可得,,
所以當(dāng)時(shí),,即,單調(diào)遞減,
當(dāng)時(shí),,即,單調(diào)遞增,
所以當(dāng)時(shí),函數(shù)有極小值即最小值,
,
所以實(shí)數(shù)的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在上的最值;
(2)設(shè),若當(dāng),且時(shí),,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左焦點(diǎn)為,其中四個(gè)頂點(diǎn)圍成的四邊形面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),設(shè)的中點(diǎn)為,,兩點(diǎn)為橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且(),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)與定點(diǎn)的距離和它到直線的距離的比是常數(shù),設(shè)點(diǎn)的軌跡為曲線.
(1)求曲線的方程;
(2)過(guò)點(diǎn)的直線與曲線交于,兩點(diǎn),設(shè)的中點(diǎn)為,,兩點(diǎn)為曲線上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),且(),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】全國(guó)文明城市,簡(jiǎn)稱(chēng)文明城市,是指在全面建設(shè)小康社會(huì)中市民整體素質(zhì)和城市文明程度較高的城市.全國(guó)文明城市稱(chēng)號(hào)是反映中國(guó)大陸城市整體文明水平的最高榮譽(yù)稱(chēng)號(hào).為普及相關(guān)知識(shí),爭(zhēng)創(chuàng)全國(guó)文明城市,某市組織了文明城市知識(shí)競(jìng)賽,現(xiàn)隨機(jī)抽取了甲、乙兩個(gè)單位各5名職工的成績(jī)(單位:分)如下表:
(1)根據(jù)上表中的數(shù)據(jù),分別求出甲、乙兩個(gè)單位5名職工的成績(jī)的平均數(shù)和方差,并比較哪個(gè)單位的職工對(duì)文明城市知識(shí)掌握得更好;
(2)用簡(jiǎn)單隨機(jī)抽樣法從乙單位5名職工中抽取2人,求抽取的2名職工的成績(jī)差的絕對(duì)值不小于4的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為菱形,,平面,且,,是的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù),).
(1)若曲線與直線的一個(gè)交點(diǎn)縱坐標(biāo)為,求的值;
(2)若曲線上的點(diǎn)到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷(xiāo)售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷(xiāo)售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為”足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬(wàn)盧布 | 合計(jì) | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷(xiāo)售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類(lèi)型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com