“a≤8”是“關于實數(shù)x的不等式|x-5|+|x+3|>a對任意x∈R恒成立”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)充分條件和必要條件的定義,結(jié)合絕對值不等式的性質(zhì)即可得到結(jié)論.
解答: 解:∵不等式|x-5|+|x+3|≥8,
∴要使不等式|x-5|+|x+3|>a對任意x∈R恒成立,
則a<8,
則“a≤8”是“關于實數(shù)x的不等式|x-5|+|x+3|>a對任意x∈R恒成立”的必要不充分條件,
故選:B
點評:本題主要考查充分條件和必要條件的判斷,利用絕對值不等式的性質(zhì)是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列給出的賦值語句中,正確的是( 。
A、3=AB、M=-3*M
C、B=A=2D、x+y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對任意的銳角α,β下列不等關系中正確的是( 。
A、sin(α+β)>sinα+sinβ
B、sin(α+β)>cosα+cosβ
C、cos(α+β)<cosα+sinβ
D、cos(α+β)>sinα+sinβ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a-b<0,則下列各式中一定成立的是( 。
A、ac<bc
B、-a>-b
C、
1
a
1
b
D、a2<b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x2+2x+5
x+1
(x>-1)圖象的最低點坐標是( 。
A、(1,2
2
B、(0,2)
C、(1,
2
D、(1,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(x,y)在橢圓
x2
4
+
y2
3
=1上,則x的范圍是( 。
A、[-4,4]
B、[-2,2]
C、[-3,3]
D、[-
3
,
3
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三角形△ABC與△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,點P,Q分別在線段BD,CD上,沿直線PQ將△PQD向上翻折,使D與A重合.

(Ⅰ)求證:AB⊥CQ;
(Ⅱ)求BP的長;
(Ⅲ)求直線AP與平面BCD所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)如圖①、②、③、④為四個平面圖,數(shù)一數(shù),每個平面圖各有多少個頂點?多少條邊?它們把平面分成了多少個區(qū)域?請將結(jié)果填入下表中:

頂點邊數(shù)區(qū)域數(shù)
(2)觀察上表,推斷一個平面圖形的頂點數(shù)V,邊數(shù)E,區(qū)域數(shù)F之間有什么關系;
(3)現(xiàn)已知某個平面圖形有999個頂點,且圍成了999個區(qū)域,試根據(jù)以上關系確定這個平面圖形的邊數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD為等腰梯形,PD⊥平面ABCD,AB=2CD,PD=AD=CD=1.
(1)求AD與PB所成角的大小;
(2)求AB與面PBD所成角的大小;
(3)求面PAD與面PBC所成銳二面角的正切值.

查看答案和解析>>

同步練習冊答案