已知函數(shù)f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的圖象兩相鄰對稱軸之間的距離是
π
2
,若將f(x)的圖象先向右平移
π
6
個單位,再向上平移2個單位,所得函數(shù)g(x)為奇函數(shù).
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)若對任意x∈[0,
π
3
],不等式f2(x)-(2+m)f(x)+2+m≤0恒成立,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,正弦函數(shù)的單調(diào)性,由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:(1)由函數(shù)的周期為
ω
=2×
π
2
,求得ω的值.再根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得φ的值,由奇函數(shù)的性質(zhì)可得b=2,從而求得函數(shù)的解析式.
(2)令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,求得x的范圍,可得函數(shù)的增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈z.
(3)若對任意x∈[0,
π
3
],利用正弦函數(shù)的定義域和值域求得f(x)∈[-2,-1].令f(x)=t,則t∈[-2,-1],不等式即 t2-(2+m)t+2+m≤0.令g(t)=t2-(2+m)t+2+m,由
g(-2)=10+3m≤0
g(-1)=5+2m≤0
,求得m的范圍.
解答: 解:(1)由題意可得,函數(shù)的周期為
ω
=2×
π
2
,求得ω=2.
將f(x)的圖象先向右平移
π
6
個單位,再向上平移2個單位,所得函數(shù)g(x)=sin[2(x-
π
6
)+φ]+2-b=sin(2x+φ-
π
3
)+2-b 為奇函數(shù),
∴φ-
π
3
=kπ,k∈z,且2-b=0,結(jié)合0<φ<π解得 φ=
π
3
,b=2,
故函數(shù)的解析式為 f(x)=sin(2x+
π
3
)-2.
(2)令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈z,求得 kπ-
12
≤x≤kπ+
π
12
,
故函數(shù)的增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈z.
(3)若對任意x∈[0,
π
3
],2x+
π
3
∈[
π
3
,π],sin(2x+
π
3
)∈[0,1],f(x)∈[-2,-1].
令sin(2x+
π
3
)-2=t,則t∈[-2,-1],不等式f2(x)-(2+m)f(x)+2+m≤0 即 t2-(2+m)t+2+m≤0,
令g(t)=t2-(2+m)t+2+m,∴
g(-2)=10+3m≤0
g(-1)=5+2m≤0
,解得m≤-
10
3
,故m的范圍是(-∞,-
10
3
].
點(diǎn)評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,二次函數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)a>0,則a+
4
a
的最小值為( 。
A、5B、4C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù).
(1)求實(shí)數(shù)k的值.
(2)證明:對任意的實(shí)數(shù)b,函數(shù)y=f(x)圖象與直線y=-
3
2
x+b最多只有一個公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,△ABC的外接圓半徑R=
3
,且滿足
cosC
cosB
=
2sinA-sinC
sinB

(1)求角B和邊b的大小;
(2)若a+c=2
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的標(biāo)準(zhǔn)方程為:
x2
a2
+
y2
b2
=1(a>b>0),該橢圓經(jīng)過點(diǎn)P(1,
3
2
),且離心率為
1
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過橢圓:
x2
a2
+
y2
b2
=1(a>b>0)長軸上任意一點(diǎn)S(s,0),(-a<s<a)作兩條互相垂直的弦AB、CD.若弦AB、CD的中點(diǎn)分別為M、N,證明:直線MN恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的側(cè)面展開圖是圓心角為120°的扇形,且圓錐的全面積為
3
cm2,求:
(1)圓錐的底面半徑和母線長;
(2)圓錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的實(shí)系數(shù)一元二次方程2x2-4(m-1)x+m2+1=0.
(1)若方程的兩根為x1、x2,且|x1|+|x2|=2,求m的值;
(2)若方程有虛根z,且z3∈R,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
,x∈R)的圖象的一部分如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)+f(x+2)的最小正周期和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
ex
2
-f′(1)•x,g(x)=
3
2
x-f(x)-
2
x

(Ⅰ)求f′(1)的值和f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)h(x)=x2-mx+4,若存在x1∈(0,1],對于任意的x2∈[1,2],總有g(shù)(x1)≥h(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案