【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),且),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)求曲線與曲線交點(diǎn)的極坐標(biāo).

【答案】(1)曲線的普通方程為)曲線的直角坐標(biāo)方程為.(2)交點(diǎn)極坐標(biāo)為.

【解析】試題分析:(1)先求出t,再代入消元將曲線的參數(shù)方程化為普通方程,根據(jù)將 曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)先求曲線與曲線交點(diǎn)的直角坐標(biāo),再化為極坐標(biāo).

試題解析:解:(1)∵,∴,即

,∴,∴

∴曲線的普通方程為).

,∴,∴,即曲線的直角坐標(biāo)方程為.

(2)由

(舍去),

則交點(diǎn)的直角坐標(biāo)為,極坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)的圖像與軸有兩個不同的交點(diǎn),其中一個交點(diǎn)的坐標(biāo)為且當(dāng),恒有

(1)求出不等式的解(表示);

(2)若以二次函數(shù)的圖像與坐標(biāo)軸的三個交點(diǎn)為頂點(diǎn)的三角形的面積為8,的取值范圍;

(3)若不等式對所有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)區(qū)間,定義在上的函數(shù)),集合

(1)若,求集合;

(2)設(shè)常數(shù)

① 討論的單調(diào)性;

② 若,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的底面邊長是2,側(cè)棱長是,則該正四棱錐的全面積為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為x軸,拋物線C過點(diǎn)A(4,4),過拋物線C的焦點(diǎn)F作傾斜角等于45°的直線l,直線l交拋物線C于M、N兩點(diǎn).

(1)求拋物線C的方程;

(2)求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校計(jì)劃利用周五下午第一、二、三節(jié)課舉辦語文、數(shù)學(xué)、英語、理綜4科的專題講座,每科一節(jié)課,每節(jié)至少有一科,且數(shù)學(xué)、理綜不安排在同一節(jié),則不同的安排方法共有( )

A. 6種 B. 24種 C. 30種 D. 36種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個年級各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時間的頻數(shù)分布表和頻率分布直方圖,將使用手機(jī)時間不低于80分鐘的學(xué)生稱為“手機(jī)迷”.

學(xué)生日均使用手機(jī)時間的頻數(shù)分布表

時間分組

頻數(shù)

[0,20

12

[20,40

20

[40,60

24

[60,80

18

[80,100

22

[100,120]

4

1將頻率視為概率,估計(jì)哪個年級的學(xué)生是“手機(jī)迷”的概率大?請說明理由.

2在高的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你有多大的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?

非手機(jī)迷

手機(jī)迷

合計(jì)

合計(jì)

附:隨機(jī)變量其中為樣本總量

參考數(shù)據(jù)

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只紅螞蟻與一只黑螞蟻在一個單位圓(半徑為1的圓)上爬動,若兩只螞蟻均從點(diǎn)A10)同時逆時針勻速爬動,若紅螞蟻每秒爬過α角,黑螞蟻每秒爬過β角(其中αβ180°),如果兩只螞蟻都在第14秒時回到A點(diǎn),并且在第2秒時均位于第二象限,求αβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程;

(2)若與曲線相切,且與坐標(biāo)軸交于兩點(diǎn),求以為直徑的圓的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案