【題目】設(shè)集合P={x|x2﹣2 x≤0},m=20.3 , 則下列關(guān)系中正確的(
A.mP
B.mP
C.{m}∈P
D.{m}P

【答案】D
【解析】解答:∵P={x|x2﹣2 x≤0},m=20.3<2<2 ,
故m∈P,因此,{m}P;
故選D.
分析:解出集合P中元素的取值范圍,判斷m的值的范圍,確定m與P的關(guān)系,從而得到答案.
【考點(diǎn)精析】本題主要考查了解一元二次不等式的相關(guān)知識(shí)點(diǎn),需要掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn , S3a4+6,且a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+1,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列:2,0,2,0,2,0,….前六項(xiàng)不適合下列哪個(gè)通項(xiàng)公式
A. =1+(―1)n+1
B. =2|sin |

C. =1-(―1)n
D. =2sin

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下4個(gè)命題:
①若 ,則a﹣c>b﹣d; ②若a≠0,b≠0,則 ;③兩條直線平行的充要條件是它們的斜率相等; ④過點(diǎn)(x0 , y0)與圓x2+y2=r2相切的直線方程是x0x+y0y=r2
其中錯(cuò)誤命題的序號(hào)是 . (把你認(rèn)為錯(cuò)誤的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】E是正方形ABCD的邊CD的中點(diǎn),將△ADEAE旋轉(zhuǎn),則直線AD與直線BE所成角的余弦值的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且過點(diǎn)B(0,1).

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)A是橢圓的右頂點(diǎn),點(diǎn)在以AB為直徑的圓上,延長(zhǎng)PB交橢圓E于點(diǎn)Q,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)e<x<10,記a=ln(lnx),b=lg(lgx),c=ln(lgx),d=lg(lnx),則a,b,c,d的大小關(guān)系(
A.a<b<c<d
B.c<d<a<b
C.c<b<d<a
D.b<d<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程 =1表示的曲線為C,給出以下四個(gè)判斷:
①當(dāng)1<t<4時(shí),曲線C表示橢圓;
②當(dāng)t>4或t<1時(shí)曲線C表示雙曲線;
③若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<t< ;
④若曲線C表示焦點(diǎn)在x軸上的雙曲線,則t>4,
其中判斷正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDEF中,四邊形ABCD是邊長(zhǎng)為2的正方形,EF∥平面ABCD,EF=1,F(xiàn)B=FC,∠BFC=90°,AE=
(1)求證:AB⊥平面BCF;
(2)求直線AE與平面BDE所成角的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案