(本題滿分15分)設(shè)數(shù)列的前項(xiàng)和為, 且. 設(shè)數(shù)列的前項(xiàng)和為,且. (1)求.
(2) 設(shè)函數(shù),對(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時,對任意恒成立
(1)
(2)存在最大的實(shí)數(shù),使得當(dāng)時,對任意恒成立.
【解析】本試題主要是考查了數(shù)列與不等式的綜合乙級數(shù)列中通項(xiàng)公式和求和問題。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012111916222039459751/SYS201211191623216445479780_DA.files/image006.png">. 那么利用通項(xiàng)公式與前n項(xiàng)和的關(guān)系得到數(shù)列的通項(xiàng)公式,設(shè)數(shù)列的前項(xiàng)和為,且. 進(jìn)而求和得到結(jié)論。
(2)因?yàn)楹瘮?shù),對(1)中的數(shù)列,是否存在實(shí)數(shù),使得當(dāng)時,對任意恒成立,只要分離為x與n的關(guān)系式,利用n的范圍得到x的取值情況。
所以存在最大的實(shí)數(shù),使得當(dāng)時,對任意恒成立.(15分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分15分)設(shè)函數(shù)且是奇函數(shù),(1)求的值;(2)若,試求不等式的解集;(3)若,且在上的最小值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(Ⅰ)若函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,求實(shí)數(shù)的最大值;
(Ⅱ)若對任意的,都成立,求實(shí)數(shù)的取值范圍.
注:為自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:解答題
(本題滿分15分)設(shè),函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
(Ⅱ)若時,不等式恒成立,實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題
(本題滿分15分)設(shè)函數(shù).
(1)當(dāng)時,取得極值,求的值;
(2)若在內(nèi)為增函數(shù),求的取值范圍;
(3)設(shè),是否存在正實(shí)數(shù),使得對任意,都有成立?
若存在,求實(shí)數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三年級隨堂練習(xí)數(shù)學(xué)試卷 題型:解答題
(本題滿分15分)
設(shè)函數(shù).
(Ⅰ)當(dāng)時,解不等式:;
(Ⅱ)求函數(shù)在的最小值;
(Ⅲ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com