【題目】給出下列命題:

(1)終邊在y軸上的角的集合是

(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin;

(3)函數(shù)f(x)=sinx的值域是[-1,1];

(4)已知函數(shù)f(x)=2cosx,若存在實數(shù)x1,x2,使得對任意的實數(shù)x都有成立,則的最小值為2π.

其中正確的命題的序號為________

【答案】(2)

【解析】(1)k=2α=π,其終邊在x軸上,所以不對;

(2)由三角函數(shù)的變換可知正確;

(3)f(x)=sinx,所以函數(shù)f(x)的值域為[0,1],所以不對;

(4)x1=0,x2=π時滿足題意,此時|x1x2|=π,所以(4)不對.

故答案為:(2).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個圓經(jīng)過坐標原點和點(2,0),且圓心C在直線y=2x上.

1)求圓C的方程;

2)過點P-2,2)作圓C的切線PAPB,求直線PAPB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位安排7位員工對一周的7個夜晚值班,每位員工值一個夜班且不重復(fù)值班,其中員工甲必須安排在星期一或星期二值班,員工乙不能安排在星期二值班,員工丙必須安排在星期五值班,則這個單位安排夜晚值班的方案共有(

A. 96B. 144C. 200D. 216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】符號表示不大于x的最大整數(shù),例如:.

(1)解下列兩個方程

(2)設(shè)方程: 的解集為A,集合,,求實數(shù)k的取值范圍;

(3)求方程的實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“日行一萬步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究性學(xué)習的需要,某大學(xué)生收集了手機“微信運動”團隊中特定甲、乙兩個班級名成員一天行走的步數(shù),然后采用分層抽樣的方法按照, , , 分層抽取了20名成員的步數(shù),并繪制了如下尚不完整的莖葉圖(單位:千步):

已知甲、乙兩班行走步數(shù)的平均值都是44千步.

(1)求的值;

(2)(。┤,求甲、乙兩個班級100名成員中行走步數(shù)在, , , 各層的人數(shù);

(ⅱ)若估計該團隊中一天行走步數(shù)少于40千步的人數(shù)比處于千步的人數(shù)少12人,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.

(1)求直線的直角坐標方程及曲線的普通方程;

(2)設(shè)是曲線上的一動點,求到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“雙十一”期間,某淘寶店主對其商品的上架時間(小時)和銷售量(件)的關(guān)系作了統(tǒng)計,得到了如下數(shù)據(jù)并研究.

上架時間

2

4

6

8

10

12

銷售量

64

138

205

285

360

430

(1)求表中銷售量的平均數(shù)和中位數(shù);

(2)① 作出散點圖,并判斷變量是否線性相關(guān)?若研究的方案是先根據(jù)前5組數(shù)據(jù)求線性回歸方程,再利用第6組數(shù)據(jù)進行檢驗,求線性回歸方程;

②若根據(jù)①中線性回歸方程得到商品上架12小時的銷售量的預(yù)測值與檢測值不超過3件,則認為得到的線性回歸方程是理想的,試問:①中的線性回歸方程是否理想.

附:線性回歸方程中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, 分別為橢圓 的上、下焦點, 是拋物線 的焦點,點在第二象限的交點,且

(1)求橢圓的方程;

(2)與圓相切的直線 (其中)交橢圓于點, ,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案