【題目】數(shù)列{an}中, ,若不等式 恒成立,則實數(shù)t的取值范圍是 .
【答案】[﹣ ,+∞)
【解析】解:∵an+1= (n∈N*),
∴ = =(n+1)+ ,
即 ﹣ =1,又 =2,
∴數(shù)列{ }是以2為首項,1為公差的等差數(shù)列,
∴ =2+(n﹣1)=n+1,
∴an= .
∵不等式 化為:t≥﹣(n+ +4).
∵n+ +4≥2 +4=4+2 ,當且僅當n= 時取等號,
由n∈N*,則當n=2時,n+ +4取最小,最小值為
∴t≥﹣ ,
所以答案是:[﹣ ,+∞).
【考點精析】根據(jù)題目的已知條件,利用數(shù)列的通項公式的相關知識可以得到問題的答案,需要掌握如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
科目:高中數(shù)學 來源: 題型:
【題目】根據(jù)預測,某地第n(n∈N*)個月共享單車的投放量和損失量分別為an和bn(單位:輛),其中an= ,bn=n+5,第n個月底的共享單車的保有量是前n個月的累計投放量與累計損失量的差.
(1)求該地區(qū)第4個月底的共享單車的保有量;
(2)已知該地共享單車停放點第n個月底的單車容納量Sn=﹣4(n﹣46)2+8800(單位:輛).設在某月底,共享單車保有量達到最大,問該保有量是否超出了此時停放點的單車容納量?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術(shù)》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分別為AE,AB的中點.
(Ⅰ)證明:PQ∥平面ACD;
(Ⅱ)求AD與平面ABE所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關結(jié)論正確的個數(shù)為( ) ①小趙、小錢、小孫、小李到4個景點旅游,每人只去一個景點,設事件A=“4個人去的景點不相同”,事件B=“小趙獨自去一個景點”,則 ;
②設函數(shù)f(x)存在導數(shù)且滿足 ,則曲線y=f(x)在點(2,f(2))處的切線斜率為﹣1;
③設隨機變量ξ服從正態(tài)分布N(μ,7),若P(ξ<2)=P(ξ>4),則μ與Dξ的值分別為μ=3,Dξ=7.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A為橢圓 =1(a>b>0)上的一個動點,弦AB,AC分別過左右焦點F1 , F2 , 且當線段AF1的中點在y軸上時,cos∠F1AF2= . (Ⅰ)求該橢圓的離心率;
(Ⅱ)設 ,試判斷λ1+λ2是否為定值?若是定值,求出該定值,并給出證明;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知Sn是等差數(shù)列{an}的前n項和,且s6>s7>s5 , 給出下列五個命題:①d>0;②S11>0;③S12<0;④數(shù)列{Sn}中的最大項為S11;⑤|a5|>|a7|.其中正確命題的個數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的左,右焦點分別為F1 , F2 , 過F1任作一條與兩坐標軸都不垂直的直線,與C交于A,B兩點,且△ABF2的周長為8.當直線AB的斜率為 時,AF2與x軸垂直. (I)求橢圓C的方程;
(Ⅱ)在x軸上是否存在定點M,總能使MF1平分∠AMB?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班開展一次智力競賽活動,共a,b,c三個問題,其中題a滿分是20分,題b,c滿分都是25分.每道題或者得滿分,或者得0分.活動結(jié)果顯示,全班同學每人至少答對一道題,有1名同學答對全部三道題,有15名同學答對其中兩道題.答對題a與題b的人數(shù)之和為29,答對題a與題c的人數(shù)之和為25,答對題b與題c的人數(shù)之和為20.則該班同學中只答對一道題的人數(shù)是;該班的平均成績是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com