若給定三元集合{1,x,x2-x},則實(shí)數(shù)x的取值范圍為
 
考點(diǎn):集合的確定性、互異性、無(wú)序性
專題:常規(guī)題型,集合
分析:根據(jù)集合中的元素滿足互異性,因此x≠1,x2-x≠1,x2-x≠x,從而可以求出x不能取的值.
解答:解:根據(jù)集合中元素滿足互異性,
所以x≠1,x2-x≠1,x2-x≠x
解得:x≠1,x≠0,x
-
5
+1
2
,x≠
5
+1
2
,x≠2,
所以實(shí)數(shù)x的取值范圍為(-∞,
-
5
+1
2
)∪(
-
5
+1
2
,0)∪(0,1)∪(1,
5
+1
2
)∪(
5
+1
2
,2)∪(2,+∞).
故答案為:(-∞,
-
5
+1
2
)∪(
-
5
+1
2
,0)∪(0,1)∪(1,
5
+1
2
)∪(
5
+1
2
,2)∪(2,+∞).
點(diǎn)評(píng):本題考查了集合的性質(zhì),重點(diǎn)考查了互異性,解題時(shí)要注意考慮全面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β是兩個(gè)不同的平面,m、n是兩條不重合的直線,則下列命題中正確的是(  )
A、若m∥α,α∩β=n,則m∥n
B、若m⊥α,n⊥β,α⊥β,則m⊥n
C、若α⊥β,α∩β=n,m⊥n,則m⊥β
D、若m⊥α,m⊥n,則n∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a<b,函數(shù)f(x)=(x-a)(x-b)的圖象如圖所示,則函數(shù)g(x)=logb(x+a)的圖象可能為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在棱錐中,AE:AB=1:3,截面EFG∥底面BCD,△BDC的周長(zhǎng)是18,求△EFG的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用“五點(diǎn)法”作函數(shù)y=cos2x,x∈R的圖象時(shí),首先應(yīng)描出的五個(gè)點(diǎn)的橫坐標(biāo)是(  )
A、0,
π
2
,π,
2
,2π
B、0,
π
4
π
2
,
4
,π
C、0,π,2π,3π,4π
D、0,
π
6
,
π
3
π
2
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

有四個(gè)函數(shù)分別是:
①f(x)=2x+1;
②f(x)=ex;
③f(x)=lnx;
④f(x)=sinx.
對(duì)于滿足:對(duì)定義域內(nèi)的任意x,都有f(x+2)+f(x)≥2f(x+1)的函數(shù)f(x)有( 。﹤(gè).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用“五點(diǎn)法”作函數(shù)y=4sin(x-
π
3
)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市新都區(qū)高三診斷測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=+lnx.

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;

(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,其中bn=,求證:當(dāng)n≥2時(shí),1+lnn>Sn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆四川省成都市高三10月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)滿足2f(x+2)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=lnx+ax (),當(dāng)x∈(―4,―2)時(shí),f(x)的最大值為―4.

(1)求x∈(0,2)時(shí),f(x)的解析式;

(2)是否存在實(shí)數(shù)b使得不等式對(duì)于恒成立?若存在,求出實(shí)數(shù)b的取值集合;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案