如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求的取值范圍.

【答案】分析:(Ⅰ)設(shè)出點(diǎn)M(x,y),表示出兩線的斜率,利用其乘積為4,建立方程化簡(jiǎn)即可得到點(diǎn)M的軌跡方程;
(Ⅱ)直線y=x+m與4x2-y2-4=0(x≠±1)聯(lián)立,消元可得3x2-2mx-m2-3=0,結(jié)合題設(shè)(m>0)可知,m>0且m≠1設(shè)Q,R的坐標(biāo),求出xR,xQ,利用,即可確定的取值范圍.
解答:解:(Ⅰ)設(shè)M(x,y),則kMA=,kMB=
∵直線MA、MB的斜率之積為4,

∴4x2-y2-4=0
又x=±1時(shí),必有一個(gè)斜率不存在,故x≠±1
綜上點(diǎn)M的軌跡方程為4x2-y2-4=0(x≠±1)
(Ⅱ)直線y=x+m與4x2-y2-4=0(x≠±1)聯(lián)立,消元可得3x2-2mx-m2-4=0①
∴△=16m2+48>0
當(dāng)1或-1是方程①的根時(shí),m的值為1或-1,結(jié)合題設(shè)(m>0)可知,m>0且m≠1
設(shè)Q,R的坐標(biāo)分別為(xQ,yQ),(xR,yR),
∵|PQ|<|PR|,∴xR=,xQ=
==
∵m>0且m≠1
,且≠4
,且
的取值范圍是(1,)∪(,3)
點(diǎn)評(píng):本題以斜率為載體,考查直線、雙曲線、軌跡方程的求解,考查思維能力,運(yùn)算能力,考查思維的嚴(yán)謹(jǐn)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•四川)如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求
|PR||PQ|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考真題 題型:解答題

如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C。
(1)求軌跡C的方程;
(2)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省樂(lè)山一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省樂(lè)山一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,動(dòng)點(diǎn)M與兩定點(diǎn)A(-1,0)、B(1,0)構(gòu)成△MAB,且直線MA、MB的斜率之積為4,設(shè)動(dòng)點(diǎn)M的軌跡為C.
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)直線y=x+m(m>0)與y軸交于點(diǎn)P,與軌跡C相交于點(diǎn)Q、R,且|PQ|<|PR|,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案