已知點(diǎn)若直線過點(diǎn)與線段相交,則直線的斜率的取值范圍是(   )

A.          B.       C.   D.

 

【答案】

C

【解析】

試題分析:根據(jù)題意,先表示出PA的斜率k=,直線PB的斜率為,那么結(jié)合圖像可知,過定點(diǎn)的直線的傾斜角為銳角 ,結(jié)合正切函數(shù)圖像可知 直線l的斜率為,故選C.

考點(diǎn):本試題考查了直線的斜率運(yùn)用。

點(diǎn)評:解決該試題的關(guān)鍵是利用邊界點(diǎn)A,B來得到過定點(diǎn)P的直線的范圍,然后結(jié)合傾斜角與斜率的關(guān)系得到斜率的范圍,屬于基礎(chǔ)題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知過點(diǎn)A(4,6)的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一個(gè)焦點(diǎn)為F(4,0),直線l過點(diǎn)F且與雙曲線右支交于點(diǎn)M、N,點(diǎn)B為雙曲線右準(zhǔn)線與x軸的交點(diǎn).
(1)求雙曲線的方程;
(2)若△BMN的面積為36
5
,求直線l的方程;
(3)若點(diǎn)P為點(diǎn)M關(guān)于x軸的對稱點(diǎn),求證:B、P、N三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

必做題,本小題10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
已知拋物線y2=4x的焦點(diǎn)為F,直線l過點(diǎn)M(4,0).
(1)若點(diǎn)F到直線l的距離為
3
,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)已知橢圓C1的離心率為,直線l: y-=x+2與.以原點(diǎn)為圓心、橢圓C1的短半軸長為半徑的圓O相切.

(1)求橢圓C1的方程;

(ll)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l2過點(diǎn)F價(jià)且垂直于橢圓的長軸,動(dòng)直線l2垂直于l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(III)過橢圓C1的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,     求直線m的斜率k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知?jiǎng)訄AG過點(diǎn)F(數(shù)學(xué)公式,0),且與直線l:x=-數(shù)學(xué)公式相切,動(dòng)圓圓心G的軌跡為曲線E.曲線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2).
(1)求曲線E的方程;
(2)已知數(shù)學(xué)公式=-9(O為坐標(biāo)原點(diǎn)),探究直線AB是否恒過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過,請說明理由.
(3)已知線段AB的垂直平分線交x軸于點(diǎn)C,其中x1≠x2且x1+x2=4.求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省永州市藍(lán)山二中高三第七次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知?jiǎng)訄AG過點(diǎn)F(,0),且與直線l:x=-相切,動(dòng)圓圓心G的軌跡為曲線E.曲線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2).
(1)求曲線E的方程;
(2)已知=-9(O為坐標(biāo)原點(diǎn)),探究直線AB是否恒過定點(diǎn),若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過,請說明理由.
(3)已知線段AB的垂直平分線交x軸于點(diǎn)C,其中x1≠x2且x1+x2=4.求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案